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Abstract— In countries with high levels of insolation, 
the demand for renewable energy sources has driven 
the rapid emergence and growth of solar power 
plants. Maintaining grid stability and efficient power 
management in response to weather variations that 
affect solar radiation intensity and battery 
consumption limits remains a major challenge. This 
study aims to develop a machine learning-based 
prediction model to estimate the electricity 
generated by solar power plants using weather data. 
Four algorithms are utilized: Linear Regression, 
Random Forest Regressor, Decision Tree Regressor, 
and Gradient Boosting Regressor. The results show 
that the Random Forest algorithm produces the best 
model, with MAE and RMSE values of 0.1114281 and 
0.3187232, respectively. This research contributes to 
the literature, particularly on the relatively 
unexplored topic of using multiple machine learning 
models to predict energy output from photovoltaic 
systems. The findings have the potential to inform 
more efficient energy policies and improve energy 
integration technologies for grid-connected solar 
power systems. 
 

Keywords: energy forecasting, machine learning, 
renewable energy. 
 
Abstrak— Di negara-negara dengan tingkat insolasi 
tinggi, permintaan akan sumber energi terbarukan 
telah menyebabkan kemunculan dan pertumbuhan 
pembangkit listrik tenaga surya yang pesat. 
Mempertahankan stabilitas jaringan dan efektivitas 
manajemen daya dalam menghadapi variasi cuaca 
yang mengubah intensitas radiasi matahari dan 
batasan konsumsi baterai merupakan tantangan 
utama. Tujuan dari penelitian ini adalah untuk 
membuat model prediksi berbasis pembelajaran 
mesin yang memperkirakan daya listrik yang 
dihasilkan dari pembangkit listrik tenaga surya 
menggunakan data cuaca. Penelitian ini 
menggunakan 4 algoritma yaitu linier regression, 
random forest regressor, decision tree regressor, 
gradient boosting regressor. Hasil penelitian 
menghasilkan model terbaik dari algoritma Random 
Forest dengan nilai MAE dan RMSE-nya masing-
masing adalah 0.1114281 dan 0.3187232. Penelitian 
ini dapat menambah pengetahuan dalam bidang 
literatur, terutama berkaitan dengan topik yang 
belum banyak diteliti tentang penggunaan beberapa 
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pembelajaran mesin untuk memprediksi keluaran 
energi dari sistem fotovoltaik surya. Hasil studi ini 
berpotensi memberikan kebijakan energi yang lebih 
efisien dan teknologi integrasi energi untuk sistem 
pembangkit listrik tenaga surya yang terintegrasi ke 
jaringan induk. 
 
Kata Kunci: peramalan energi, pembelajaran mesin, 
energi terbarukan. 
 

INTRODUCTION 
 

Renewable energy has become essential in 
reducing global carbon emissions and reliance on 
fossil fuels (Holechek, Geli, Sawalhah, & Valdez, 
2022). Solar energy, particularly in high-insolation 
countries like India, is among the most promising 
renewable sources (Rathore & Panwar, 2022). 
India’s investment in large-scale solar power plants 
has significantly boosted global clean energy 
capacity, with global solar capacity growing over 
30% annually in recent years due to decreasing 
costs and improving photovoltaic (PV) module 
efficiency (Helveston, He, & Davidson, 2022). 

Advances in PV technology, energy storage, 
and smart grids have helped address the challenge 
of solar energy’s natural variability, which depends 
on daily solar radiation intensity changes (Tan et al., 
2021). Despite these advances, weather-induced 
fluctuations in solar output create stability issues 
for power grids (Poddar, Kay, Prasad, Evans, & 
Bremner, 2023), demanding sophisticated 
prediction technologies to mitigate the impact of 
these fluctuations and enhance solar integration 
into the global grid system. 

Current prediction models for solar output 
are often limited and lack adaptability to real-time 
weather changes, leading to inefficiencies in 
planning and grid stability (Al-Dahidi et al., 2024). 
Machine learning models, such as Random Forest 
and Gradient Boosting, offer more accurate solar 
output predictions based on historical weather and 
operational data, minimizing the risks associated 
with solar generation (Hanif et al., 2024). These 
models hold potential for improving energy 
planning at the grid level, ensuring a more reliable 
renewable energy supply (T. Ahmad, Madonski, 
Zhang, Huang, & Mujeeb, 2022). 

Improving solar power forecasting is crucial 
for grid stability and efficient resource management 
(Bouquet, Jackson, Nick, & Kaboli, 2024). Accurate 
predictions enable grid operators to react 
proactively to energy supply changes, reducing 
disruptions and operational costs (Mirshekali, 
Santos, & Shaker, 2023). Enhanced forecasting 
through machine learning can thus transform 
renewable energy management (Aslam et al., 2021), 
especially for large-scale solar systems integrated 

within existing power networks, addressing the 
limitations of traditional statistical models and 
boosting overall system efficiency. 

Previous research by (Oladapo, Olawumi, & 
Omigbodun, 2024) employed Long Short-Term 
Memory (LSTM), Random Forest, Support Vector 
Machines (SVM), and ARIMA to predict energy 
generation and demand patterns. The study by 
(Bashir et al., 2021) used SVM, K-Nearest Neighbor 
(KNN), Logistic Regression, Naive Bayes, Neural 
Networks, and Decision Tree classifiers. In the 
research conducted by (Chang, Bai, & Hsu, 2021), 
several regression techniques were compared for 
generating prediction models, including least 
squares and Support Vector Machines (SVM) using 
Multiple Short-Term Functions (MSTF). 

Previous research by (Suanpang & Jamjuntr, 
2024) employed the Light Gradient Boosting 
Machine (LGBM) and K-Nearest Neighbors (KNN). 
Research by (Abdelsattar, Ismeil, Azim Zayed, 
Abdelmoety, & Emad-Eldeen, 2024) utilized 
CatBoost, Gradient Boosting Machines (GBMs), 
Multilayer Perceptron (MLP) regressor, Support 
Vector Machine (SVM), XGBoost, and Random 
Forest (RF). The study by (Ibrar et al., 2022) used 
artificial neural network (ANN), Averaged 
Perceptron, Bayes Point Machine, Decision Forest, 
Decision Jungle, LightGBM, Locally Deep SVM, 
Logistic Regression (LR), SVM, and XGBoost 
methods. 

This research stands out by compare 
Random Forest (RF), Gradient Boosting Regressor 
(GBR), Decision Tree, and Linear Regression 
leveraging strength in handling complex data and 
ability to gradually enhance accuracy. These four 
machine learning methods were chosen because 
they are capable of handling continuous target data. 
This compare produces more stable and precise 
predictions, offering advantages in improving 
power grid efficiency and resilience. 

While machine learning techniques are 
widely used in solar power generation prediction, 
few studies compare multiple techniques using the 
same data to find the most accurate approach. This 
study aims to develop a prediction model using four 
techniques: gradient boosting, decision tree, 
random forest, and linear regression. 
 

MATERIALS AND METHODS 
 

Starting with the combination of the original 
data, this study goes through numerous stages of 
work, including data preparation, data separation, 
training, model testing, and evaluation. As seen in 
Figure 1, each of these phases can be briefly 
explained as a flow chart. The next part provides an 
indirect description of each step.    
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Source: (Research Result, 2024) 

Figure 1. Research Flowchart 
 

This section provides a detailed description 
of the data utilized in the study as well as several 
data analytics that can provide considerably more 
thorough insights and are highly beneficial for 
enhancing the electricity produced by solar power 
plants.  

Two CSV format files 
Plant_Generation_Data.csv, which contains 
information about energy, and 
Plant_Weather_Sensor_Data.csv, which contains 
information about weather make up the dataset that 
was acquired from www.kaggle.com. Every 15 
minutes for 34 days (2020-02-15 to 2020-06-17), 
data is recorded by 22 grids from both files. The 
attribute names for the Plant_Generation_Data.csv 
file, which has 67,698 rows of data overall, are 
DATE_TIME, PLANT_ID, DC_POWER, AC_POWER, 
DAILY_YIELD, and TOTAL_YIELD (Figure 2). 
IRRADIATION, AMBIENT_TEMPERATURE, 
MODULE_TEMPERATURE, SOURCE_KEY, 
PLANT_ID, and DATE_TIME are among the column 
properties included in the 
Plant_Weather_Sensor_Data.csv file, which has 
3,259 rows of data overall (Figure 3). 

 

 
Source: (Research Result, 2024) 

Figure 2. Plant Generation Data 
 

 
Source: (Research Result, 2024) 

Figure 3. Plant Weather Sensor Data 
 
Peak sun hours (PSH): The phrase "peak sun 

hours" (PSH) typically describes the amount of 
sunlight that occurs each day. The number of hours 
that 1 kW/m2 of energy would be required to 
generate the same amount of energy as the total for 

the day is known as the total PSH for the day. The 
terms "peak sunlight" and "peak sun hours" are 
interchangeable. Irradiance is the total amount of 
solar energy incident on a unit area over a given 
time period, like a day, month, or year. Insolation is 
another word for irradiance. The amount of sunlight 
that reaches a surface in a specific amount of time. 
Peak Sun Hour is the daily insolation measurement 
(kWh/m2/day). Irradiance: Solar radiation incident 
to a surface at a given time, in W/m2 (Figure 3). 
 

 
Source: (Research Result, 2024) 

Figure 4. Ideal Graph of Solar Power Generation 
 

The shape in Figure 4 is based on the sun's 
angle to the panel. In the morning, when the sun is 
low, sunlight passes through more of the 
atmosphere, resulting in energy loss. As the sun 
rises higher during the day, less atmosphere is 
crossed, allowing the panel to capture more energy. 
In winter, although the sun is lower in the sky, 
brighter and sunnier days can still provide good 
energy, despite the risk of snow reflecting sunlight.  
 
Model 

Four machine learning models were selected 
for this study because the target dataset is 
continuous; these will be briefly covered in this 
section. 

 
1. Linier Regression 
A linear relationship between an independent 
variable (X) and a dependent variable (Y) is 
modeled using a machine learning method. Because 
of its ease of use and effectiveness, the linear 
regression technique is frequently employed for 
tasks involving regression analysis and prediction. 
The following is the basic formula for linear 
regression: 
 
𝑌 =  𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛+∈ ................................. (1) 
 
Where: 
Y is the dependent variable, 
β0 is the intercept, 
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𝛽1, 𝛽2, … , 𝛽n is the regression coefficient, 
X1, X2, … , Xn is the independent variable, and 
ϵ is the error or residual. 

 
This technique offers a clear interpretation of each 
feature's contribution and works well with datasets 
that have a linear relationship between variables(G. 
James, Witten, Hastie, Tibshirani, & Taylor, 2023). 
Despite being straightforward, Linear Regression is 
frequently used as a reference model to evaluate 
how well more intricate algorithms work (Huang, 
Ko, Shu, & Hsu, 2020). A basic framework for 
assessing whether a straightforward linear 
connection is adequate for predicting how much 
energy a solar power plant would generate based on 
meteorological factors like temperature, wind 
speed, and solar radiation is provided by linear 
regression in the context of this study. 

 
2. Decision Tree Regressor 
The decision tree is a tree-based machine learning 
approach for classification and regression (Yulianto 
et al., 2023), which splits data into smaller groups 
based on information gain. It uses simple "if-then" 
criteria to handle complex data, such as location, 
temperature, and event time, for tasks like crime 
category prediction (AlKheder & AlOmair, 2022) . 
Information Gain, which is based on entropy, is the 
fundamental formula used in Decision Trees to 
choose the optimal attribute (Aning & Przybyła-
Kasperek, 2022) . The following is the formula: 
 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 =  𝐸(𝑆) − ∑
|𝑆𝑖|

|𝑆|
  𝐸(𝑆𝑖)

𝑛
𝑖=1  ...... (2) 

 
𝐸(𝑆) = − ∑ 𝑝𝑖  𝑙𝑜𝑔2 𝑝𝑖

𝑐
𝑖=1  ................................................ (3) 

 
The entropy prior to separation is E(S), Si is the 
subset of data following its separation according to 
specific attributes, n is the number of subsets, and S 
is the initial dataset's size, The dataset's class 𝑖 
probability is denoted by pi. Although it has a 
tendency to overfit on complex data, the Decision 
Tree model is frequently used due to its 
computational speed and intuitive interpretation, 
and in this study, it is used to predict the electrical 
power that can be generated from solar heat 
because of its ability to handle non-linear and 
interpretive data (Costa & Pedreira, 2023). 
 
3. Random Forest Regressor 
The Random Forest Regressor, an ensemble 
machine learning algorithm, predicts solar power 
plant energy output using weather variables like 
temperature, wind speed, and solar radiation due to 
its effectiveness with non-linear and dynamic data 
(Bakır, Orak, & Yüksel, 2024), (N. Ahmad, Ghadi, 
Adnan, & Ali, 2022). Random Forest was chosen for 

its ability to handle high-dimensional and 
interacting features, its robustness against noisy 
data, and its useful feature importance metric for 
identifying key factors (Ghosh & Cabrera, 2022). 
 
4. Gradient Boosting Regressor (GBR) 
Gradient Boosting Regressor (GBR) is effective for 
regression problems, especially with complex and 
non-linear data, like solar power plant energy 
predictions (Gareth James, Witten, Hastie, 
Tibshirani, & Taylor, 2023). GBR works by 
sequentially improving predictions, where each 
model corrects the errors of the previous one, a 
process known as boosting (Safari, Kheirandish 
Gharehbagh, & Nazari Heris, 2023). Gradient 
Boosting was chosen for its ability to iteratively 
enhance prediction accuracy by optimizing the 
errors of previous models. This algorithm excels at 
detecting complex patterns in data and often 
delivers superior performance compared to 
traditional methods, particularly with imbalanced 
datasets (Bentéjac, Csörgő, & Martínez-Muñoz, 
2021). 
 
Performance Metric 
1. MAE 
Mean Absolute Error (MAE) is a widely used 
evaluation metric for measuring the effectiveness of 
regression models, including forecasting energy 
output from solar power plants. (Karunasingha, 
2022). The difference between the expected and 
actual outcomes of a model is measured by the 
mean absolute error, or MAE. The MAE is calculated 
mathematically using the following formula. 

 

MAE =  
1

n
 ∑ |yi − yî|

n
i=1  .................................................... (4) 

 
The actual value, such as the power generated by 
the solar panel, is denoted by yi. The model's 
predicted value is y�̂� . The total number of 
predictions is denoted by n. This measure is easy to 
use because it provides a clear indication of the 
inaccuracy in values predicted from the predictive 
data. Better model performance is indicated by a 
lower MAE number, which shows a smaller average 
difference between the expected and actual values. 
In this study, the MAE metric was chosen to evaluate 
the prediction algorithms that predict the energy 
output of the solar power plants. For example, MAE 
calculates the difference between the expected and 
actual energy values when a model, like a Random 
Forest and Gradient Boosting, is used to analyze 
weather and energy output data. 
 
2. RMSE 
The effectiveness of a regression model in 
predicting the energy output of a solar power plant 
is measured by Root Mean Squared Error (RMSE) 
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(Hastomo, Bayangkari Karno, Kalbuana, Meiriki, & 
Sutarno, 2021; Karno et al., 2023), which indicates 
the average prediction error in the same units as the 
target variable (Karunasingha, 2022). Its 
computation is based on the following equation: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1  .......................................... (5) 

 
The actual value, such as the power generated by 
the solar panel, is denoted by yi. The model's 
predicted value is y�̂�. The total number of 
predictions is denoted by n. The square root of the 
error is the mean square error (RMSE) between the 
expected and actual output values. This suggests 
that outliers affect RMSE because extreme errors 
are penalized more severely than moderate ones. 
 

RESULTS AND DISCUSSION 
 

Dataset preparation 
Before the data is used in the machine 

learning process, a number of steps are taken, 
specifically: 
1. "%Y-%m-%d %H: %M" is the standard data 

format for the "DATE_TIME" feature of the 
"Plant_Generation_Data.csv" and 
"Plant_Weather_Sensor_Data.csv" files. 

2. 'PLANT_ID' in the generation file and 
'SOURCE_KEY' and 'PLANT_ID' in the weather 
file are examples of superfluous data attributes 
that have been removed. 

3. By binding the "DATE_TIME" attribute from both 
Generation_Data and Sensor_Data files into a 
single new file, the files can be merged. 

4. Dividing time information into new columns 
called "DATE," "TIME," "DAY," "MONTH," 
"WEEK," "HOURS," and "MINUTES." 

5. The file has 18 columns and 67698 rows, as a 
result of data checking that it does not contain 
null data (Figure 5). 

6. Changing the "SOURCE_KEY" attribute's data 
type from category to numeric. 

7. To observe the degree of fluctuation, a plot was 
created displaying ambient temperature data 
over a 34-day period (Figure 6). 

 

 
Source: (Research Result, 2024) 

Figure 5. Null Data Checking 
 

 
Source: (Research Result, 2024) 

Figure 6: Count Data Visualization Using 
AMBIENT_TEMPERATURE 

 
Solar Power Plant Disturbance and Abnormality 
Detection 

DC_POWER generation is abnormal, as 
shown by the daily DC_POWER generation g raph 
(Figure 7), which displays daily power generation 
variations. Figure 7 is simply a part of the full image 
that should be displayed in order to conserve pages. 
There is less fluctuation in DC_POWER generation 
on the days listed below: May 15, May 18, May 22, 
May 23, May 24, May 25, May 26, and May 26, 2020. 
The following days saw a significant variation in 
DC_POWER generation: 2020-05-19, 2020-05-28, 
2020-05-29, 2020-06-02, 2020-06-03, 2020-06-04, 
2020-06-13, 2020-06-14, and 2020-06-17.  

Source: (Research Result, 2024) 
Figure 7. Daily DC Power Generation Graph 
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DC power generation experienced significant 
fluctuations and decreases on 2020-06-03, 2020-
06-11, 2020-06-12, and 2020-06-15. The incredibly 
large fluctuations and decreases in DC_POWER 
generation could be due to a system failure, weather 
variations, or cloud cover. 

The DC_POWER generation per day bar chart 
(Figure 9) shows the average power generation per 
day; 
1. The highest average DC_POWER production 

occurred on May 15, 2020.  
2. The peak in average DC power generation was 

recorded on 2020-06-11. 
 

This large variation in DC_POWER generation 
is caused by weather-related changes or system 
malfunctions. However, this bar chart (Figure 9) 
allows us to identify the day that generated the 
highest and lowest DC_POWER. 

 

 
Source: (Research Result, 2024) 
Figure 9. Bar Chart of Daily DC_POWER Generation 

 
The daily DC_POWER generation and the 

IRRADIATION graph pattern appear to be quite 
similar. IRRADIATION plays a major role in 
DC_POWER, or output power, in solar power plants. 
Alternatively, it can be said to be directly 
proportional (Figure 8). Figure 8 is simply a part of 
the full image that should be displayed in order to 
conserve pages. As with DC_POWER generation, 
2020-05-15 and 2020-06-11 saw the highest and 
lowest average IRRADIATION generation, 
respectively (Figure 10).  

 

 
Source: (Research Result, 2024) 

Figure 10. Bar Chart of Daily IRRADIATION 
 
An Analysis of the Top and Poorest Solar Power 
Facilities 

The following are the main environmental 
factors that affect solar power production. Cloud 
cover, especially thicker layers in winter, reduces 
sunlight and lowers solar panel output. In addition 
to the sun's position, factors like panel temperature 
also affect performance. The production of solar 
energy relies directly on the intensity of solar 
radiation. Both the DC_POWER and IRRADIATION 
graphs are similar to the previously mentioned ideal 
graphs. There are no clouds in the sky, and the 
weather looks to be great due to the small variations 
in IRRADIATION, solar panel temperature, and 
ambient temperature (Figure 11). 

 
Estimating Solar Power Plant Inverter Efficiency 

Inverter efficiency is the ratio of AC output 
power (pac) to DC input power (pdc), accounting for 
heat loss during conversion. Standby power, also 
known as idle power consumption, is used to 
maintain the inverter's power mode (Figure 12). 

The efficiency of low-quality modified sine 
wave inverters ranges from 75% to 85%, while 
high-quality pure sine wave inverters have an 
efficiency of 90% to 95%. Efficiency improves with 
higher load power capacity, reaching its peak before 
exceeding the inverter's output capacity. Below 
15% load, efficiency is typically low. Proper 
matching of the inverter's capacity with the load 
enhances efficiency, resulting in higher AC output 
for the same DC input power (Figure 13).

Source: (Research Result, 2024) 
Figure 8: Graph of Daily IRRADIATION 
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Source: (Research Result, 2024) 
Figure 11: DC_POWER, IRRADIATION, and Temperature Graph Comparison 

 

 
Source: (Research Result, 2024) 

Figure 12. This Study's AC/DC Efficiency Graph 
 

 
Source: (Research Result, 2024) 

Figure 13. Graph of AC/DC Efficiency 

 
Correlation 

The correlation map (Figure 14) shows a 
strong relationship between DC_POWER and 
IRRADIATION of 0.93. To further confirm this 
connection, we multiply IRRADIATION by 1000 to 
get the same scale. When the DC_POWER and 
IRRADIATION graphs in Figure 15 are combined, 
the patterns in the fluctuations of the two graphs 
generated by 22 power grids are identical. The 
predictive potential of any model will be fairly high 
due to the strong correlation between DC output 
power and IRRADIATION. 

 

 
Source: (Research Result, 2024) 

Figure 14. Map of Correlation 
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Source: (Research Result, 2024) 

Figure 15. Merging the DC_POWER and 
IRRADIATION   

 
Forecasting Solar Power 

Four models created during the training 
process were tested using the test dataset. Actual 
facts and predicted results are shown in graphs 
(Figures 16, 17, 18, and 19). To save pages, the four 
graphs only show 100 of the 13.540 test data points. 
To assess these four models, the prediction error is 
estimated using MAE and RMSE (Table 1). With the 
least MAE and RMSE values of 0.1114281 and 
0.3187232, respectively, Random Forest is the best 
model. 

The Random Forest model in this study 
improves power grid efficiency by enhancing 
energy consumption forecasts, supporting better 
distribution, optimizing renewable energy use, 
reducing costs, and improving reliability. It can be 
integrated into smart grids for faster decision-
making, early warnings during demand surges, and 
better green energy integration for a sustainable 
system. 

 

 
Source: (Research Result, 2024) 

Figure 16. Linier Regression Prediction Results 
Plot 

 

 
Source: (Research Result, 2024) 

Figure 17. Random Forest Prediction Results Plot 
 

 
Source: (Research Result, 2024) 

Figure 18. Decision Tree prediction results Plot 
 

 
Source: (Research Result, 2024) 

Figure 19. Gradient Boosting prediction results 
Plot 

 
Table 1.  The Outcomes f Four Machine Learning 

Algorithms' Error Measurements 

Source: (Research Result, 2024) 
 

Random Forest demonstrates the best 
performance (MAE 0.1114 kW, RMSE 0.3187 kW), 
significantly more accurate than Linear Regression 
and Gradient Boosting, reflecting a substantial 
reduction in error. The small gap between MAE and 
RMSE in Random Forest indicates a stable and 
consistent model, minimizing the risk of overfitting 
or underfitting. Random Forest is more effective 
than Gradient Boosting (RMSE 1.4015 kW), 
highlighting a more optimal selection and 
refinement of the ensemble model. Hyperparameter 
optimization and improved data preprocessing 
enhance the model's performance. Adaptation to 
the specific characteristics of solar data also 
supports more accurate predictions. 

 
CONCLUSION 

 
Four models were created by training 54,158 

training data using four machine learning 
algorithms. 13,540 test datasets were then used to 
evaluate these four models. MAE and RMSE were 
used to measure the model testing outcomes; the 
model with the lowest error value is the best model. 
Random Forest emerged as the strongest model 
from this investigation, with RMSE and MAE values 
of 0.3187232 and 0.1114281, respectively. A 

 MAE (kW) RMSE (kW) 

Linier Regression 0.5966207 0.8637416 

Random Forest 0.1114281 0.3187232 

Decision Tree 0.1380701 0.4269832 

Gradient Boosting 0.6495836 1.4015379 
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machine learning system called Random Forest may 
be used to forecast power output with greater 
accuracy, which is crucial for enhancing the 
electrical grid's stability and efficiency. 

This study focuses on testing the Random 
Forest model with limited data and comparing only 
four algorithms. Future research should use more 
diverse data, explore algorithms like Gradient 
Boosting or Deep Learning, and develop a real-time 
prediction system to improve electricity grid 
management. 
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