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Abstract—Information Retrieval (IR) systems are 
pivotal for efficient data management, particularly in 
tasks involving name searches and entity 
identification. This study evaluates text 
preprocessing techniques, including case folding, 
phonetic normalization, and gender tagging, that 
affect the performance of classical (TF-IDF, LSI) and 
CNN-based retrieval models for multilingual name 
matching. Using a dataset of 365,468 globally diverse 
names, this study implements a preprocessing 
pipeline featuring: Double Metaphone phonetic 
preprocessing (92% validation accuracy), gender 
disambiguation for unisex names (92% accuracy), 
and optimized n-gram tokenization for short names. 
Evaluation metrics include precision, recall, F1-score, 
and our novel Name Similarity Score (NSS), 
combining orthographic and phonetic preprocessing. 
Results show our full pipeline improves recall to 1.00 
and F1-score by 37% while reducing false negatives 
by 63%. Key findings reveal: TF-IDF achieves superior 
recall (0.98 vs CNN’s 0.85), LSI handles cultural 
variants effectively, and CNNs deliver the highest 
precision (0.91 vs TF-IDF’s 0.70), particularly for 
unisex names. This work contributes both a scalable 
multilingual preprocessing framework and the NSS 
evaluation metric for robust name retrieval systems. 
 
Keywords: CNN, information retrieval, multilingual 
names, name retrieval, phonetic normalization. 
 
Abstrak—Sistem Information Retrieval (IR) sangat 
penting untuk manajemen data yang efisien, 
khususnya dalam tugas pencarian nama dan 
identifikasi entitas. Studi ini mengevaluasi teknik text 
preprocessing, termasuk case folding, normalisasi 
fonetik, dan penandaan gender, yang memengaruhi 
kinerja model klasik (TF-IDF, LSI) dan model 
retrieval berbasis CNN untuk pencocokan nama 
multibahasa. Dengan menggunakan dataset berisi 
365.468 nama beragam dari seluruh dunia, 
penelitian ini menerapkan alur preprocessing yang 

mencakup: Double Metaphone phonetic 
preprocessing (akurasi validasi 92%), disambiguasi 
gender untuk nama uniseks (akurasi 92%), dan 
tokenisasi n-gram yang dioptimalkan untuk nama 
pendek. Metrik evaluasi meliputi precision, recall, F1-
score, serta Name Similarity Score (NSS) yang 
merupakan metrik baru dengan menggabungkan 
orthographic dan phonetic preprocessing. Hasil 
penelitian menunjukkan bahwa alur lengkap kami 
meningkatkan recall hingga 1,00 dan F1-score 
sebesar 37% serta mengurangi false negatives 
sebesar 63%. Temuan utama mengungkapkan 
bahwa: TF-IDF mencapai recall tertinggi (0,98 
dibandingkan 0,85 pada CNN), LSI efektif dalam 
menangani variasi budaya, dan CNN memberikan 
precision tertinggi (0,91 dibandingkan 0,70 pada TF-
IDF), khususnya untuk nama uniseks. Karya ini 
berkontribusi pada kerangka preprocessing 
multibahasa yang dapat diskalakan serta metrik 
evaluasi NSS untuk sistem name retrieval yang lebih 
andal. 
 
Kata Kunci: CNN, information retrieval, nama 
multibahasa, pencarian nama, normalisasi fonetik. 
 

INTRODUCTION 
 

Information Retrieval (IR) systems are 
critical infrastructure for managing textual data 
across search engines, digital libraries, and identity 
verification platforms (X. Zhang et al., 2023). A 
persistent challenge in IR is the accurate retrieval of 
personal names, which are often lexically brief, vary 
across languages, and exhibit orthographic 
differences (e.g., “Catherine” vs. “Katherine”) (Aso et 
al., 2020). These variations hinder exact matching 
and necessitate specialized preprocessing 
techniques to improve retrieval performance. 

Traditional text preprocessing methods, such 
as case folding, lemmatization, and stop-word 
removal, are well-established for general document 
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retrieval (Boghara, 2025). However, their 
effectiveness diminishes when applied to names 
due to unique structural and phonetic 
characteristics (Zeng, 2025). For instance, phonetic 
algorithms like Double Metaphone (Raykar et al., 
2024) address spelling with different meanings 
(e.g., “Smith” vs. “Smyth”). Similarly, lemmatization, 
which reduces words to their base forms, offers 
limited utility for proper nouns (Abidin et al., 2024). 

Recent advances in neural IR models, 
including CNN-based architectures, have 
demonstrated superior performance in capturing 
and phonetic analysis similarities (Suyahman et al., 
2024). However, their reliance on large-scale 
training data and computational resources poses 
challenges for real-time applications (Song et al., 
2024). Classical models like TF-IDF and LSI remain 
relevant for their efficiency and interpretability but 
struggle with semantic and cross-lingual name 
variants (Tang, 2025). 

Despite significant progress in Information 
Retrieval (IR), the problem of accurately retrieving 
personal names remains underexplored. Prior 
studies have predominantly relied on monolingual 
datasets and have not sufficiently addressed the 
complexities posed by cross-linguistic variation, 
orthographic diversity, and the ambiguity of unisex 
or short-name forms. Furthermore, existing 
research tends to emphasize either algorithmic 
novelty or empirical evaluation in isolation, with 
limited attention to the trade-offs between accuracy 
and computational efficiency—an aspect that is 
crucial for real-world IR applications (Verma & 
Zafari, 2025). By combining these approaches, NSS 
provides a more reliable measure of similarity for 
names that deviate orthographically but remain 
phonetically close. Second, the study extends the 
empirical scope by conducting large-scale 
experiments on 365,468 multilingual names, 
including highly challenging cases such as unisex 
names and short lexical forms. This broad coverage 
enables a more realistic evaluation of name 
retrieval techniques, moving beyond the limitations 
of monolingual and homogeneous datasets. Third, it 
conducts a systematic analysis of the trade-offs 
between classical models—such as TF-IDF and 
Latent Semantic Indexing (LSI)—and more 
computationally intensive deep learning methods, 
particularly Convolutional Neural Networks 
(CNNs). This comparative framework delineates the 
boundaries between accuracy and efficiency, 
offering practical guidance for IR system 
deployment where resource constraints are often 
nontrivial. 

The experimental results highlight distinct 
performance strengths across methods. CNN-based 
models achieve superior precision (0.91) for unisex 
names by capturing contextual cues often missed by 

classical approaches. In contrast, TF-IDF attains the 
highest recall (0.98), making it well suited for 
exhaustive retrieval tasks. These findings offer 
practical insights for IR system design, particularly 
for applications requiring precise identity 
verification, cross-lingual name matching, and 
efficient real-time retrieval. By addressing both 
methodological and practical aspects, this study 
advances theoretical understanding while 
providing concrete guidance for next-generation IR 
systems. 

 
MATERIALS AND METHODS 

 
Our methodology integrates Convolutional 

Neural Networks (CNNs) with specialized 
preprocessing to optimize name retrieval 
performance. The framework consists of our four 
key phases: data preparation, hybrid preprocessing, 
CNN architecture design, and evaluation. Each 
phase is tailored to address challenges in 
multilingual name matching, leveraging both 
phonetic and orthographic features. 

 
Data Preparation 

This study employ a comprehensive 
multilingual name corpus 
(name_gender_dataset.csv) comprising 365,468 
entries across multiple linguistic systems.  

Language Coverage: Latin-script (English, 
Spanish). Non-Latin scripts (Arabic, Mandarin 
Chinese). Phonetic variations across languages. 

Data Normalization: Removal of special 
characters and Unicode symbols (Naz et al., 2023). 
Case normalization to lowercase. Diacritic 
preservation for linguistic accuracy. 

Stratified Partitioning: The dataset was 
systematically divided while maintaining; Language 
distribution balance, Gender label proportions, 
Phonetic pattern representation. Partition sizes: 
Training set 70% (255,828 samples), Validation set 
15% (54,820 samples), Test set 15% (54,820 
samples). This partitioning strategy ensures: 
Representative evaluation across linguistic groups, 
prevention of data leakage between splits, reliable 
model generalization assessment. 

The dataset’s comprehensive coverage of 
name variations, combined with rigorous 
preprocessing and statistically sound partitioning, 
provides a robust foundation for evaluating the 
proposed CNN architecture’s cross linguistic 
performance. 

 
Hybrid Preprocessing 

To optimize input representation for the CNN 
model, this study implement a multi-stage 
preprocessing framework that integrates phonetic, 
orthographic, and demographic features. This 
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hybrid approach addresses three critical challenges 
in multilingual name matching: phonological 
variation, gender ambiguity, and morphological 
complexity. 

Phonetic Normalization: Implementation all 
names are converted to Double Metaphone codes 
(e.g., “Katherine” → “KORN”) and appended as 
auxiliary features. Rationale: This ensures 
phonological equivalence across orthographic 
variations (Vykhovanets et al., 2020), particularly 
valuable for Cross-language matches (e.g., English 
“Christopher” vs. “Spanish “Cristobal”). Common 
misspellings (e.g., “Jon” vs. “John”). 

Character-Level Tokenization: Each name is 
split into characters (e.g., “Ali” → [A, l, I] + 22 
padding tokens). Optional bigram representations 
for short names (e.g., “Zoe” → [“Zo”,”oe”]). Zero-
padding for fixed-length input (Jingye et al., 2021). 
Fine-grained orthographic patterns. Language-
specific morphological structures. 

Gender Tagging: Unisex names (e.g., 
“Taylor”) are suffixed with gender labels (“_M” or 
“_F”) based on annotated training data and 
contextual clues when available (Ghate et al., 2025). 

To address the challenges of multilingual 
name variations, this study designed a hybrid 
preprocessing pipeline that combines phonetic, 
structural, and orthographic techniques. Below is 
Table 1, which summarizes the core methods. 

 
Table 1. Hybrid Preprocessing Pipeline for CNN-

Based Name Matching 
Technique Example Purpose 

Double 
Metaphone 

“Katherine” → 
“KORN” 

Phonetic invariance 

Gender Tagging “Taylor” → 
“Taylor_M” 

Disambiguate 
unisex names 

N-gram 
Tokenization 

“Zoe” → [“Zo”, 
“oe”] 

Capture subword 
patterns 

Source: (Research Results, 2025) 
 
CNN Architecture for Name Retrieval 

The proposed Convolutional Neural Network 
(CNN) architecture is specifically designed to 
address the challenges of cross-lingual name 
matching by jointly modelling orthographic and 
phonetic features. As illustrated in Figure 1, the 
model employs a dual-input pipeline to process raw 
character sequences and phonetic representations 
in parallel, enabling robust handling of spelling 
variations and phonological similarities.  

Input Representation including Character-
Level Embeddings: Each name is tokenized into 
Unicode characters (e.g., “Ali” → [‘A’, ‘l’, ‘i’]) and 
zero-padded to a fixed length (e.g., 25 characters). A 
trainable embedding layer converts these 
characters into dense 64-dimensional vectors, 
capturing orthographic similarities (Cosma et al., 
2025). Phonetic Encoding: Parallel to raw 

characters, Double Metaphone codes (e.g., 
“Katherine” → “KORN”) are encoded as auxiliary 
inputs using a 32-dimensional dense layer, ensuring 
phonological invariance (Elmurodov & Meyliyeva, 
2025). 

Multiscale Convolutional Processing. Three 
parallel 1D convolutional branches with kernel 
sizes (3, 5, 7) extract hierarchical n-gram patterns. 
Local Patterns (kernel = 3): Detects Short n-grams 
(e.g., “Mar’ in “Maria”) via smaller kernels. 
Contextual Patterns (kernel = 5, 7): Captured longer 
morphological segments (e.g., “-therine’ in 
“Katherine”). Each convolutional layer is followed 
by ReLU activation and max-pooling (size=2) for 
dimensionality while preserving discriminative 
features (Gupta et al., 2024). 

Feature Fusion and Classification. 
Concatenation: The Convolutional output (64D) and 
phonetic embeddings (32D) are merged into a 96-
dimensional hybrid representation (e.g., 75-
dimensional vector). Fully Connected Layers: Two 
dense layers (128 → 64 units) with dropout (p=0.3) 
regularize the model. Output Layer: A sigmoid unit 
predicts match/non-match probabilities, optimized 
via binary cross-entropy loss. 

A detailed overview of the CNN model layers, 
their configurations, and respective purposes is 
provided in Table 2. This table highlights the 
integration of orthographic and phonetic features 
through multiscale convolutional processing and 
feature fusion, demonstrating how the architecture 
balances expressive capacity with computational 
efficiency. 

 
Table 2. CNN Model Layers 

Layer Parameters Output 
Shape 

Purpose 

Input 
(Characters) 

Max length = 
25, 64D 
embeddings 

(25, 
64) 

Raw 
orthographic 
features 

Input 
(Phonetic) 

32D dense 
encoding 

(32) Phonetic 
invariance 

ConvId Kernels: 3, 5, 
7; ReLU 
activation 

(11, 
64) 

N-gram pattern 
extraction 

MaxPooling Pool Size = 2 (75) Dimensionality 
reduction 

Feature 
Fusion 

Concatenate 
character + 
phonetic 

(1) Hybrid 
representation 

Output Sigmoid  Match/non-
match 
classification 

Source: (Research Results, 2025) 
 

Dual-Stream Design: The simultaneous 
processing of raw characters and phonetic codes 
(see Figure 1) mitigates limitations of single-
modality approaches, achieving 23% higher F1-
scores on tonal language Mandarin (e.g., Mandarin "
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李" (Lǐ) vs. "黎" (Lí)) compared to pure character-
based CNNs. 

Multiscale Convolution: Varied kernel sizes 
enable detection of both localized spelling variants 
(e.g., “Cath-“ vs. “Kath-“) and broader morphological 
patterns (e.g., "محمد" vs. "محمود"). 

Computational Efficiency: Despite its hybrid 
design, the model maintains a lean parameter count 
(<500K), enabling real-time deployment. 

The proposed CNN architecture is illustrated 
in Figure 1, which processes name retrieval tasks 
through a dual-input pipeline designed to capture 
both orthographic (character-level) and phonetic 
features. The input layer accepts raw name 
characters (e.g., “Katherine” as a sequence of 
Unicode tokens) alongside preprocessed phonetic 
codes (e.g., Double Metaphone “KORN”), which are 
then transformed into dense embeddings. 

 

 
Source: (Research Results, 2025) 

Figure 1. CNN Architecture Diagram 
 
These parallel streams are processed 

through multiple 1D convolutional layers with 
varying kernel sizes (3, 5, 7) to extract hierarchical 
n-gram pattern, smaller kernels detect localized 
charater combinations (e.g., “Kat”), while larger 
kernel identify broader contextual segments (e.g., 
“therine”). The outputs are fused into a unified 
representation through feature concatenation, 
followed by fully connected layers for 
dimensionality reduction and a sigmoid-activated 
output layer to compute match probabilities. This 
design ensures robustness to spelling variations 
(e.g., “Catherine” vs. “Katherine”) while maintaining 
computational efficiency. 

 
Training and Evaluation 

The proposed parallel CNN architecture was 
trained using the Adam optimizer with a learning 
rate of 0.001. A batch size of 64 was adopted, and 
early stopping was applied by monitoring validation 
loss with a patience threshold of five epochs. This 
configuration balances convergence speed with 
generalization, reducing the risk of overfitting. 

 
Table 3. Layer Configuration Summary of Parallel 

CNN Architecture 
Layer (type) Output 

Shape 
Param 

# 
Connected to 

Characater_Input (None, 25, 
64) 

0 - 

ConvId_3 
(ConvID) 

(None, 23, 
64) 

12.352 Character_Inpu
t[…  

Layer (type) Output 
Shape 

Param 
# 

Connected to 

ConvId_4 
(ConvID) 

(None, 21, 
64) 

20.544 Character_Inpu
t[…  

ConvId_5 
(ConvID) 

(None, 19, 
64) 

28.736 Character_Inpu
t[…  

max_poolingId_3 
(MaxPollingID) 

(None, 11, 
64) 

0 ConvId_3 [0] 
[0]  

max_poolingId_4 
(MaxPollingID) 

(None, 10, 
64) 

0 ConvId_4 [0] 
[0]  

max_poolingId_5 
(MaxPollingID) 

(None, 9, 
64) 

0 ConvId_5 [0] 
[0]  

flatten_3 
(Flatten) 

(None, 
704) 

0 Max_poolingId
_3 […  

flatten_4 
(Flatten) 

(None, 
640) 

0 Max_poolingId
_4 […  

flatten_5 
(Flatten) 

(None, 
576) 

0 Max_poolingId
_5 […  

Phonetic_Input 
(InputLayer) 

(None, 32) 0 - 

concatenate_1 
(Concatenate) 

(None, 
1920) 

0 flatten_3 [0] 
[0], flatten_4 
[0] [0], 
flatten_5 [0] 
[0]  

dense_1 (Dense) (None, 64) 2.112 Phonetic_Input 
[0… 

Feature_Fusion 
(Concatenate) 

(None, 
1984) 

0 Concatenate_1 
[0… 
Dense_1 [0] [0]  

Output (Dense) (None, 1) 1.985 Feature_Fusion 
[0… 

Source: (Research Results, 2025) 
 

As summarized in Table 3, the architecture 
consists of 65,729 trainable parameters (≈256.75 
KB), with no non-trainable components. The model 
integrates dual input streams: a character-level 
sequence of maximum length 25 encoded into 64-
dimensional embeddings, and a 32-dimensional 
phonetic input vector. 
 
Total params: 65,729 (256.75 KB) 
 Trainable params: 65,729 (256.75 KB) 
 Non-trainable params: 0 (0.00 B) 
 
Training Configuration: 
Optimizer: Adam (learning rate = 0.001) 
Batch Size: 64 
Early Stopping: Monitors validation loss (patience = 5 epochs) 

 

 
Source: (Research Results, 2025) 
Figure 2. CNN with Parallel Character and Phonetic 

Streams. 
 
Figure 2 illustrates our dual-stream CNN 

architecture designed to jointly process 
orthographic (character) and phonetic 
representations for text classification. The model 
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consists of two parallel input pathways: (1) 
Character Stream (Left), processes raw character 
embeddings (25 tokens x 64 dimensions) through 
three parallel 1D convolutional layers with kernel 
sizes 3, 5, and 7 to capture n-gram patterns at 
multiple scales. Each branch includes ReLU 
activation and max-pooling (size = 2) for 
dimensionality reduction. Flattened outputs are 
concatenated into a unified character 
representation. (2) Phonetic Stream (Right), takes 
32-dimensional dense phonetic encodings. 
Transforms features through a dense layer with 
ReLU activation. The model merges both streams 
through feature fusion (concatenation layer), 
combining orthographic and phonetic information 
into a hybrid representation. This joint embedding 
feeds into a sigmoid output layer for binary 
classification. 

 
RESULTS AND DISCUSSION 

 
Performance Metric 

The proposed CNN-based approach was 
evaluated against two established baselines: TF-IDF 
and Latent Semantic Indexing (LSI) using a 
multilingual test corpus comprising 54,820 names. 
Quantitative results are presented in Table 4, with 
comparative visualization in Figure 3. 

 
Table 4. Comparative Performance of IR Models 

Model Precision Recall F1-Score NSS 
CNN 0.91 0.88 0.89 0.87 
TF-IDF 0.72 0.95 0.82 0.76 
LSI 0.68 0.89 0.77 0.71 

Source: (Research Results, 2025) 
 

The CNN model achieved the highest 
Precision (0.91), significantly outperforming TF-
IDF (0.72) and LSI (0.68). This enhancement is 
attributed to its capacity to discern fine-grained 
orthographic patterns (e.g, distinguishing “Jon” 
from “Jhon”) through convolutional character-level 
feature extraction (Adelia et al., 2024). 

While TF-IDF demonstrated the highest 
Recall (0.95), its lower than Precision (0.72) 
indicates a propensity for over-matching 
phonetically similar but semantically irrelevant 
names. Recall (0.88), slightly lower than TF-IDF 
(0.95) but with significantly fewer irrelevant 
matches, as phonetic normalization (Double 
Metaphone) reduced over-matching by 23% 
(Karakasidis & Koloniari, 2023). 

The CNN’s superior NSS (0.87), a composite 
metric, Levenshtein distance, and phonetic 
alignment to confirm its efficacy in handling spelling 
variations (e.g., “Mohamed” vs. “Muhamad”) 
(Petkovic & Fioresi, 2024). 

Figure 3 presents a comparative analysis of 
performance metrics (Precision, Recall, F1-score, 

and Name Similarity Score/NSS) across three 
models: CNN, TF-IDF, and LSI. The line chart 
illustrates the relative strengths of each approach. 
CNN outperforms in precision (0.91) and NSS 
(0.87), as shown by the blue line, highlighting its 
effectiveness in reducing false positives through 
character-level convolutions and phonetic 
normalization (Double Metaphone). This advantage 
is particularly relevant for high-stakes applications 
such as identity verification, where accuracy is 
critical (Maryanto et al., 2024). 

TF-IDF Excels in Recall (0.95) but Lags in 
Precision. TF-IDF (orange line) achieves the highest 
Recall (0.95), indicating comprehensive retrieval of 
relevant names. However, its lower Precision (0.72) 
suggests a trade-off, as it tends to over-match 
phonetically similar but irrelevant names (e.g., “Jon” 
vs. “Jhon”) (Zaburanna, 2023). 

LSI shows Balanced but Moderate 
Performance. LSI (green line) strikes a middle 
ground with Recall (0.89) and F1-score (0.77), 
reflecting its semantic indexing approach. However, 
it underperforms in NSS (0.71), highlighting 
limitations in capturing phonetic nuances 
(Association, 2023). 

 

 
Source: (Research Results, 2025) 

Figure 3. Performance Metrics Comparison: CNN 
vs. TF-IDF vs. LSI 

 
Language-Specific Analysis 

Figure 4 presents the CNN model’s 
performance across four languages (English, 
Spanish, Arabic, Mandarin) and three evaluation 
metrics (CNN, TF-IDF, LSI). Latin-script languages 
(English and Spanish) achieved the highest F1-
scores, with English reaching 0.93 and Spanish 0.91, 
benefiting from the CNN’s effective n-gram learning 
(e.g., distinguishing “Javier” vs. “Xavier”). Non-Latin 
scripts (Arabic and Mandarin) showed lower 
performance, with F1-scores of 0.85 and 0.82, 
respectively. Errors in Mandarin primarily resulted 
from tonal ambiguities (e.g., "李" (Lǐ) vs. "黎" (Lí)), 
while Arabic faced challenges with dialectal spelling 
variations (e.g., "محمد" vs. "محمود") that reduced recall  
(C. Li & Al-Tamimi, 2024)(Al-Fuqaha’a et al., 2024). 

 



 
 

 
 
 

 
Vol. 21, No. 2 September 2025 | DOI: 10.33480/pilar.v21i2.6884 

223 

P-ISSN: 1978-1946 | E-ISSN: 2527-6514 

 

 
Source: (Research Results, 2025) 
Figure 4. CNN Model Performance by Language and 

Metric 
 
Across all languages, CNN consistently 

outperformed TF-IDF and LSI, highlighting its 
ability to capture character-level patterns. For non-
Latin scripts, performance can be further improved 
by combining CNN with phonetic rules to address 
phonetic variations and tonal ambiguities (Aboulola 
& Umer, 2024)(Lo & Chou, 2022). This evidence 
supports the recommendation to use CNN for Latin-
script languages, while leveraging hybrid 
approaches for Arabic and Mandarin to mitigate 
inherent limitations. 

 
Ablation Study: Impact of Component Removal 
on F1-Score 

The ablation study reveals clear performance 
disparities when individual components are 
removed. Excluding phonetic input causes the most 
significant decline, with Recall dropping by 15% in 
cross-lingual name matching. In comparison, 
removing gender tagging primarily impacts unisex 
name recognition, lowering Precision by 12% (e.g., 
“Taylor”) (Kulczynski et al., 2021)(Merritt, 2025). 
These results underscore that while both 
components are essential, phonetic normalization 
contributes more critically to overall model 
robustness. 

 

 
Source: (Research Results, 2025) 

Figure 5. Impact of Component Removal on F1-
Score 

 

Figure 5 illustrates the impact of component 
removal on model performance, measured by F1-
score. The ablation study results show that 
removing phonetic normalization produces the 
most significant drop (0.89 → 0.76), confirming its 
crucial role in handling spelling variations across 
languages (Moshref et al., 2024). Removing gender 
tagging reduces the score to 0.78, highlighting its 
importance for resolving ambiguities in unisex 
names such as “Taylor” (Mryglod et al., 2022). In 
contrast, removing n-grams only slightly affects the 
score (0.81), indicating that tokenization is more 
relevant for longer names. A line chart with marker 
annotations is used to emphasize performance 
decline trends and ensure methodological 
transparency. These findings affirm that combining 
CNN with phonetic and gender-tagging features 
remains the most effective approach for 
multilingual name retrieval. 

 
Computational Efficiency: Latency vs. Memory 
Usage 

Latency 2.34s/query (vs. 0.58s for TF-IDF), 
justified by higher accuracy. Scalability has linear 
time complexity with dataset size. Adding a line 
chart to visualize computational efficiency (e.g., 
latency, memory usage) across models (CNN, TF-
IDF, LSI) is crucial to highlight trade-offs between 
accuracy and speed. 

 

 
Source: (Research Results, 2025) 

Figure 6. Computational Efficiency: Latency vs. 
Memory Usage. 

 
Figure 6 illustrates the computational 

efficiency of the evaluated models in terms of 
latency and memory usage. The dual-axis line chart 
clearly shows that CNN has higher latency 
(2.34s/query) and memory usage (512MB) 
compared to TF-IDF (0.58s, 125MB) and LSI (0.81s, 
256MB), justifying its use only in accuracy-critical 
scenarios (Rasyid & Untari Ningsih, 2024). TF-IDF is 
optimal for real-time applications due to its low 
resource footprint. 

The visualization helps users choose models 
based on hardware constraints (e.g., edge devices 
vs. cloud servers). 
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Source: (Research Results, 2025) 

Figure 7. Grouped Bar Plot Computational 
Efficiency Comparison. 

 
Figure 7 displays a grouped bar plot that 

compares model efficiency in terms of latency 
(seconds/query) and memory usage (MB) across 
CNN, TF-IDF, and LSI. The visualization was 
generated using the plt.bar() function in Matplotlib, 
with x = np.arange(len(models)) to define evenly 
spaced positions for each model group ([0, 1, 2]). A 
bar width of 0.35 was applied to balance readability 
and spacing. Latency bars were plotted at x – 
width/2 (shifted left) using Matplotlib’s default 
blue, while memory bars were plotted at x + 
width/2 (shifted right) in default orange, enabling 
clear side-by-side comparison. The y-axis values 
correspond to measured results: CNN (2.34 s, 512 
MB), TF-IDF (0.58 s, 128 MB), and LSI (0.81 s, 256 
MB). Annotations above each bar report exact 
values to enhance interpretability. 

From the results, CNN is the most resource-
intensive, with 2.34 s latency and 512 MB memory 
usage. TF-IDF is the most efficient, requiring only 
0.58 s and 128 MB, making it ideal for real-time 
retrieval systems. LSI balances the two, with 0.81 s 
latency and 256 MB memory consumption. This 
technical setup ensures that the grouped bar chart 
is the most suitable visualization, as it effectively 
compares two discrete metrics (latency and 
memory) within each model, whereas a line chart 
would be less appropriate since no temporal trend 
is involved. 

 
Limitation 

Resource intensity requires GPU acceleration 
for training. Tonal language struggles with 
Mandarin/Vietnamese. The limitation involves 
quantifiable trends (e.g., performance degradation 
with dataset size, language-specific accuracy 
drops).  

 

 
Source: (Research Results, 2025) 

Figure 8. CNN Latency Scalability Limitation 
 

Figure 8 shows that CNN latency grows 
rapidly with dataset size, rising from 0.52s/query at 
25k entries to 2.34s/query at 365k entries. The 
steep increase between 25k–100k entries highlights 
CNN’s computational sensitivity, while larger 
datasets further amplify inefficiency. These results 
confirm that, although CNN excels in accuracy, its 
scalability is limited, making it less suitable for real-
time large-scale IR without optimization or hybrid 
approaches. 

The language-specific performance gaps, 
highlight F1-score disparities between Latin vs. 
non-Latin scripts. 

 

 
Source: (Research Results, 2025) 

Figure 9. F1-Score Disparities: Latin vs Non-Latin 
Scripts. 

 
Figure 9 shows clear disparities in model 

performance across scripts. CNN achieves the 
highest F1-scores for Latin languages (English = 
0.93, Spanish = 0.91), but its accuracy drops to 0.85 
for Arabic and 0.82 for Mandarin, reflecting 
phonetic challenges in non-Latin scripts. TF-IDF 
exhibits smaller cross-script variation (Δ0.10) 
compared to CNN (Δ0.11), making it relatively more 
robust for multilingual scenarios. These findings 
highlight CNN’s superiority in precision but also the 
need for enhanced phonetic normalization to 
reduce performance gaps across writing systems. 
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Practical Implication 
In practical deployment scenarios, choosing a 

model often requires balancing accuracy with 
computational efficiency. While high-precision 
models such as CNN offer superior reliability, they 
may introduce higher latency, which can hinder 
real-time applications. Conversely, simpler models 
like TF-IDF provide faster responses but with 
reduced accuracy. To illustrate this trade-off, Figure 
10 compares precision and latency across models, 
providing actionable insights for selecting the most 
suitable method based on specific use cases. 

 

 
Source: (Research Results, 2025) 
Figure 10. Practical Trade-off: Precision vs Latency 

 
Figure 10 illustrates the trade-off between 

precision and latency across models. CNN delivers 
the highest precision (0.95) but incurs higher 
latency (~2.5 s/query), making it suitable for high-
stakes applications such as identity verification. In 
contrast, TF-IDF achieves lower precision (0.72) but 
with the lowest latency (~0.7 s/query), favoring 
real-time or resource-constrained deployments like 
search autocomplete. LSI shows balanced but 
suboptimal performance on both metrics. These 
results emphasize the importance of aligning model 
choice with application priorities—accuracy for 
critical tasks versus speed for interactive systems. 

 

 
Source: (Research Results, 2025) 

Figure 11. CNN Scalability Limitation. 
 

Figure 11 illustrates the scalability 
limitations of CNN as dataset size increases. The F1-
score declines from 0.92 to 0.87 (a drop of around 
6%), indicating performance degradation with 
larger entries. These findings highlight that while 
CNN excels in accuracy, its efficiency decreases at 
large-scale data volumes, necessitating 
optimization approaches such as distributed 
computing or lighter architectures for big data 
implementation. 

In addition to accuracy and latency, 
hardware utilization plays a critical role in model 
deployment decisions. Resource requirements 
determine whether a model can be efficiently 
executed on local edge devices or requires cloud-
based infrastructure. 

 

 
Source: (Research Results, 2025) 

Figure 12. Hardware Requirements: CPU vs GPU 
Usage. 

 
Figure 12 illustrates the hardware 

requirements in terms of CPU and GPU usage. TF-
IDF relies solely on CPUs with a modest utilization 
of around 15%, making it lightweight and suitable 
for deployment on resource-constrained or edge 
devices. In contrast, CNN requires substantial GPU 
resources (90% utilization) along with higher CPU 
demand (40%), underscoring the need for 
specialized GPU-equipped servers. This trade-off 
indicates that TF-IDF is optimal for real-time, low-
resource scenarios, while CNN is better suited for 
precision-critical tasks executed in cloud 
environments. 

 
CONCLUSION 

 
This study systematically evaluated the 

impact of hybrid preprocessing techniques on the 
performance of classical IR models (TF-IDF, LSI) 
and a CNN-based model for multilingual name 
retrieval. The experimental results demonstrate 
that the full preprocessing pipeline, integrating 
phonetic normalization (Double Metaphone), 
gender tagging, and n-gram tokenization, 
significantly enhanced retrieval performance, 
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achieving a 37% improvement in F1-score and 
reducing false negatives by 63%. The CNN-based 
model excelled in Precision (0.91), particularly for 
unisex names, while TF-IDF achieved superior 
Recall (0.98), highlighting a trade-off between 
accuracy and coverage. The novel Name Similarity 
Score (NSS), combining orthographic and phonetic 
metrics, proved effective for evaluating name-
matching robustness, especially for spelling 
variations (‘Katherine” vs. “Catherine).  

Language-specific analysis revealed that the 
CNN outperformed classical models for Latin scripts 
(F1 = 0.93) but faced challenges with tonal 
languages (e.g., Mandarin, F1 = 0.82), emphasizing 
the need for adaptive phonetic rules. The ablation 
study underscored the critical role of phonetic 
features (15% Recall drop when removed) and 
gender tagging (12% Precision decline). Despite 
higher computational costs (2.34s/query), the 
CNN's accuracy justifies its use in precision-
sensitive applications like identity verification. 

This research contributes a scalable 
preprocessing framework for multilingual name 
retrieval. Empirical validation of hybrid CNN-
phonetic architectures for handling name 
variations. Practical guidelines for model selection, 
CNN for precision, TF-IDF for recall, and LSI for 
semantic matching. These findings provide practical 
guidance for implementation: TF-IDF is 
recommended for edge devices (e.g., mobile 
applications) due to low latency and minimal 
memory usage, while CNN is more suitable for cloud 
environments that prioritize accuracy (e.g., identity 
verification). 

Future work should optimize computational 
efficiency and extend phonetic normalization to 
tonal languages. The findings advance IR system in 
multicultural contexts, balancing linguistic diversity 
with operational accuracy. 
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