ALGORITMA C4.5 UNTUK PREDIKSI HASIL PEMILIHAN LEGISLATIF DPRD DKI JAKARTA

¹Evicienna, ²Hilda Amalia

^{1,2}Jurusan Komputerisasi Akuntansi AMIK Bina Sarana Informatika Jakarta Jl. Ciledug Raya No. 168 Ulujami, Jakrta Selatan email: ¹evicienna.eca@bsi.ac.id, ²hilda.ham@bsi.ac.id

ABSTRACT

Elections are a means of implementation of the sovereignty of the people in the Unitary State of Indonesia based on Pancasila and 1945 Constitution. Elections held in Indonesia is to choose the leadership of both the president and vice president, member of parliament, parliament, and the DPD. The election results should be predicted accurately, because an impact on various aspects of social, economic, security, and others. Based on these problems we need a model that can accurately predict the outcome of the election. C4.5 algorithm model is a model that is easy to understand and has a good degree of accuracy. By using the C4.5 algorithm models the obtained results are of high accuracy values for the election results in the amount of 97.84% and the AUC value obtained is 0.970 with a diagnosis rate Excellent Classification

Keyword: C4.5 Algorithm, Prediciton, Election

I. Pendahuluan

Pemilu adalah sarana pelaksanaan kedaulatan rakyat dalam Negara Kesatuan RI yang berdasarkan pancasila dan UUD 1945(UU RI nomor 3 tahun 1999). Pemilihan Umum (pemilu) merupakan salah satu pilar utama untuk memilih pimpinan(Sardini, 2011). Untuk penetapan caleg DPRD terpilih dilaksanakan dengan sistem suara terbanyak pada pemilu tahun 2009. Dengan ketentuan suara terbanyak, penetapan caleg terpilih ditetapkan peringkat suara sah terbanyak pertama, kedua, ketiga, dan seterusnya. Ketentuan ini tertuang dalam peraturan KPU nomor 15 tahun 2009. Ketentuan ini membuat sistem penetapan calon terpilih menjadi berbeda dengan pemilu tahun 2004. Setiap lima tahun tatacara perhitungan suara selalu berubah sesuai dengan peraturan perundang-undangan yang berlaku. Prediksi hasil pemilihan umum perlu diprediksi dengan akurat, karena hasil prediksi yang akurat sangat penting dan mempunyai dampak diberbagai aspek sosial, ekonomi, keamanan, dan lainlain(Borisyuk, Borisyuk, Rallings, & Thrasher, 2005). Bagi para pelaku ekonomi, peristiwa politik seperti pemilu tidak dapat dipandang sebelah mata, mengingat hal tersebut dapat mengakibatkan risiko positif maupun negatif terhadap kelangsungan usaha yang dijalankan.

Algoritma C4.5 atau disebut dengan pohon keputusan adalah sebuah pohon dimana

terdapat node internal yang mendeskripsikan atribut-atribut, setiap cabang menggambarkan hasil dari atribut yang diuji, dan setiap daun menggambarkan kelas. Pohon keputusan dengan mudah dapat dikonversi ke aturan klasifikasi. Secara umum pohon keputusan memiliki akurasi yang baik, namun keberhasilan penggunaan tergantung pada data yang diolah.

Penelitian sebelumnya pernah membahas mengenai prediksi pemilu dengan motode decision tree maupun classification tree dengan nilai akurasi baik. Dari beberapa penelitian tersebut dilakukan dengan model clasification tree dan neural network hasil akurasi yang didapat untuk classification tree sebesar 92.82% dana neural network sebesar 96,82% (Vishnuprasad, 2005), model k-Feature Set hasil akurasinya 80% (Moscato, Mathieson, & Berretta, 2004), dan model CHAID (Chisquared Automatic Interaction Detection) total estimasi yang didapat sebesar 97,9% (Choi & Han, 1999).

Pada penelitian ini akan memprediksi hasil pemilu dengan menggunakan algoritma dengan menganalisis sejumlah atribut yang menjadi parameter untuk prediksi hasil pemilu DPRD DKI Jakarta, diantaranya: nama partai, no urut partai, suara sah partai, nama caleg, kota administrasi, jenis kelamin, suara sah caleg, no urut caleg, jumlah perolehan kursi, dan daerah pemilihan.

II. Kajian Literatur

a. **Data Mining**

Data mining adalah salah satu cabang ilmu komputer yang banyak menarik perhatian masyarakat. Data mining adalah tumpukan data yang sudah tersimpan selama bertahun-tahun yang dimasukkan kedalam database tetapi tidak digunakan kembali atau disebut "data sampah". Data mining digunakan untuk menggali dan mendapatkan informasi dari data dengan jumlah besar(Gorunescu, 2011). Salah satu metode data mining adalah pengklasifikasian mengekstrak yaitu kegiatan memprediksi label kategori untuk masingmasing data. Adapun salah satu model pengklasifikasin dari data mining tersebut adalah algoritma C4.5 yang akan dijadikan sebagai model pada penelitian ini.

Algoritma C4.5

Algoritma C4.5 adalah hasil dari pengembangan algoritma ID3 (Iterative Dichotomiser) yang dikembangkan oleh Quinlan(Han & Kamber, 2006). Algoritma C4.5 atau pohon keputusan mirip sebuah pohon dimana terdapat node internal (bukan daun) yang mendeskripsikan atribut-atribut, setiap cabang menggambarkan hasil dari atribut yang diuji, dan setiap daun menggambarkan kelas. Pohon keputusan dengan mudah dapat dikonversi ke aturan klasifikasi. Secara umum keputusan pengklasifikasi pohon memiliki akurasi yang baik, namun keberhasilan penggunaan tergantung pada data yang akan diolah.

Adapun tahapan yang digunakan dalam sebuah pohon keputusan menggunakan algoritma C4.5 yang ada di penelitian ini(Gorunescu, 2011) yaitu:

- 1. Mempersiapkan data training, dapat diambil dari data histori yang pernah sebelumnya dan sudah terjadi kelas-kelas dikelompokan dalam tertentu.
- Menentukan akar dari pohon dengan menghitung nilai gain yang tertinggi dari masing-masing atribut atau berdasarkan nilai index entropy Sebelumnya terendah. dihitung terlebih dahulu nilai index entropy,

Entropy (i) =
$$-\sum_{j=1}^{m} f(i,j) \cdot \log 2 f[(i,j)]$$

Keterangan:

i = himpunan kasusm = jumlah partisi i f(i,j) = proposi j terhadap i

Hitung nilai gain dengan rumus:

Entropy split =
$$-\sum_{i=1}^{p} \frac{n1}{n}$$
. IE (i)

Keterangan:

p = jumlah partisi atribut

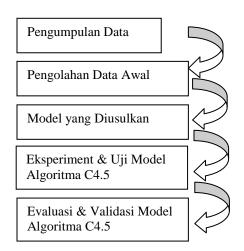
ni = proporsi ni terhadap i

n = jumlah kasus dalam n

4. Ulangi langkah ke-2 hingga semua record terpartisi

Proses partisi pohon keputusan akan berhenti disaat:

- a. Semua tupel dalam record dalam simpul m mendapat kelas yang sama
- b. Tidak ada atribut dalam record yang dipartisi lagi
- Tidak ada record didalam cabang yang kosong.


III. **Metode Penelitian**

Terdapat empat metode penelitian yang umum digunakan, yaitu Action Research, Experiment, Case Study, dan Survey(Dawson, 2009). Pada penelitian kali ini yang digunakan adalah penelitian Experiment, yaitu penelitian yang melibatkan penyelidikan perlakuan pada parameter/variabel tergantung dari penelitinya dan menggunakan tes yang dikendalikan oleh si peneliti itu sendiri. Dalam penelitian eksperimen digunakan spesifikasi software dan hardware sebagai alat bantu dalam penelitian pada Tabel 1.

Tabel 1 Spesifikasi Hardware dan Software

Software	Hardware
Sistem Operasi:	CPU: Dual Core
Win 7	
Data Mining: Rapid	Memory: 1 GB
Data Mining: Rapid Miner	Memory: 1 GB

Pada penelitian ini, data yang digunakan adalah data pemilu tahun 2009. Data pemilu akan diolah menggunakan model tersebut algoritma C4.5 untuk mendapatkan nilai akurasi yang baik dan dapat digunakan sebagai rules dalam memprediksi hasil pemilu. Dalam penelitian ini akan dilakukan beberapa langkah-langkah atau tahapan penelitian seperti yang terdapat pada gambar 1.

Gambar 1 Tahapan Penelitian

1. Pengumpulan Data

penelitian digunakan Pada ini pengumpulan data sekunder, yaitu mengambil data pemilu ditahun 2009, menggunakan buku, jurnal, publikasi, dan lain-lain. Data yang didapat dari KPUD Jakarta adalah data pemilu tahun 2009 dengan jumlah data sebanyak 2268 record, terdiri dari 11 variabel atau atribut. Adapaun variabel prediktor yaitu no urut partai, nama partai, suara sah partai, no urut caleg, nama caleg, jenis kelamin, kota adminstrasi, daerah pemilihan, suarah sah caleg, jumlah perolehan kursi. Sendangkan variabel tujuannya yaitu hasil pemilu. Berikut contoh data pemilu tahun 2009 pada Tabel 2:

Dan Seterusava	Partai Gecekan Indonesia Raya	Partai Gecekan Indonesia Raya	Partai Peduli Rakyat Nasional	Partai Pengusaha Dan Pekerja Indonesia	Partai Pengusaha Dan Pekerja Indonesia	Partai Karva Peduli Bangsa	Partai Karva Peduli Bangsa	Partai Hati Nucani Rakyat	Partai Hati Nucani Rakyat	Nama Partai
	Ir. S. Andyka	Muhammad <u>Sfaiful</u> Jihad	Achmad Bayhaqi, SH	Pinter Peesma Guming	Eddy Rardeds, SE	Ir. Thomas Yulius Soputan	Drs. Haris	Supravito	H. Jamaluddin Lamanda, SH	Nama Calon Lagislatif
	1	1	Ţ	L	1	1	1	1	1	Ж.
	Kota Administrasi Jakarta Utara	Kota <u>Administrasi</u> Jakarta Selatan	Kota <u>Administrasi</u> Jakarta Selatan	Kota Administrasi Jakarta Timur	Kota Administrasi Jakarta Timur	Kota <u>Administrasi</u> Jakarta Utara	Kota <u>Administrasi</u> Jakarta Utara	Kota <u>Administrasi</u> Jakarta Utara	Kota <u>Administrasi</u> Jakarta Utara	Kota Administrasi
	5	5	4	s	3	2	2	1	1	No Uzut Parpol
	35464	35464	2888	3801	3801	3255	3255	20917	20917	Suara Sah Partai
	6	6	0	0	0	0	0	6	6	Jumlah Peroleha n Kursi
	DP-1	DP-1	DP-4	DP-3	DP-3	DP-1	DP-1	DP-1	DP-1	Daerah Pemilihan
	5	4	2	2	-	2	1	2	1	No Uzut Cales
	4014	1909	310	241	1259	302	385	3348	2425	Suarra Sain Coleg
	YA	TIDAK	TIDAK	TIDAK	TIDAK	TIDAK	TIDAK	YA	TIDAK	Hasil Pemilu

<u>Tabel 2.</u> Data <u>Pemilu Tahun</u> 2009

2. Pengolahan Data Awal

Untuk mendapatkan data yang berkualitas terdapat teknik *preprocessing* yang digunakan pada penelitian ini, yaitu:

1. Data integration and transformation, untuk meningkatkan akurasi dan

Tabel 3 Candidate Split Algoritma C4.5

Tabel 3	Candidate Split A	
Candidate	Child	Nodes
Split		
1	Suara sah caleg ≤	Suara sah caleg >
	6989.500	6989.500
	Suara sah caleg ≤	Suara sah caleg >
	4295.500	4295.500
	Suara sah caleg ≤	Suara sah caleg >
	8529.500	8529.500
	Suara sah caleg ≤	Suara sah caleg >
	4488	4488
	Suara sah caleg <	Suara sah caleg >
	2589.500	2589.500
	Suara sah caleg <	Suara sah caleg >
	2919.500	2919.500
	Suara sah caleg ≤	Suara sah caleg >
	5600.500	5600.500
	Suara sah caleg <	Suara sah caleg >
	5898	5898
	Suara sah caleg <	Suara sah caleg >
	6319	6319
	Suara sah caleg <	Suara sah caleg >
	3643.500	3643.500
2	Suara sah partai	Suara sah partai >
_	≤ 49839	49839
	Suara sah partai	Suara sah partai >
	≤ 16982.500	16982.500
	Suara sah partai	Suara sah partai >
	≤ 43039.500	43039.500
	Suara sah partai	Suara sah partai >
	≤ 46526	46526
	Suara sah partai	Suara sah partai >
	≤ 21615	21615
	Suara sah partai	Suara sah partai >
	≤ 28368.500	28368.500
	Suara sah partai	Suara sah partai >
	≤ 26112	26112
3		Jumlah perolehan
3	Jumlah perolehan kursi ≤ 14.500	kursi > 14500
		Jumlah perolehan
	Jumlah perolehan kursi ≤ 5	kursi > 5
4		
4		ai Amanat Nasional
		ai Damai Sejahtera
		Partai Demokrasi
	Indonesia Perjuang	
	Nama partai = Part	
		Partai Gerakan
	Indonesia Raya	
	Nama partai = Part	
	-	Partai Keadilan
	Sejahtera	
		rtai Peduli Rakyat
	Nasional	
	Nama partai =	Partai Persatuan
	Pembangunan	

3. Model yang Diusulkan

efisiensi algoritma(Vercellis, 2009). Data yang digunakan dalam penulisan ini bernilai kategorikal. Data ditransformasikan kedalam angka menggunakan *software* RapidMiner, terlihat pada Tabel 3

Model yang diusulkan pada penelitian ini adalah menggunakan algoritma C4.5, yang terlihat pada Gambar 2

Gambar 2 Model yang Diusulkan

Algoritma C4.5 yaitu model untuk mengubah data menjadi pohon keputusan dengan aturan-aturannya (*rules*).

IV. PEMBAHASAN

a. Eksperimen

Adapun eksperimen yang dilakukan pada penelitian ini adalah:

 Menghitung jumlah kasus class YA dan class TIDAK serta nilai Entropy dari semua kasus. Kasus dibagi berdasarkan atribut pada Tabel 2.3 dengan jumlah kasus 2268 record, kelas YA ada 94 record dan kelas TIDAK sebanyak 2174 record sehingga didapat entropy:

Entropy (i) =
$$-\sum_{j=1}^{m} f(i,j) \cdot \log 2 f[(i,j)]$$

 $= (-94/2268 \cdot \log_2 (94/2268)) + (-2174/2268 \cdot \log_2 (2174/2268))$ = 0.2488

Hitung nilai Gain dari masing-masing atribut pada Tabel 3, sebagai contoh untuk suara sah caleg:

 \leq 6989.500 = 2203/2268

> 6989.500 = 65/2268

Atribut suara sah caleg ≤ 6989.500 terdiri dari 32 class YA dan 2171 class TIDAK, dan untuk atribut suara sah caleg > 6989.500 terdiri dari 62 class YA dan 3 class TIDAK. Nilai Entropynya dapat dihitung sebagai berikut:

$$\mathit{Entopy\,split} = \sum_{i=1}^{p} \frac{ni}{n} \, \mathit{IE} \, (i)$$

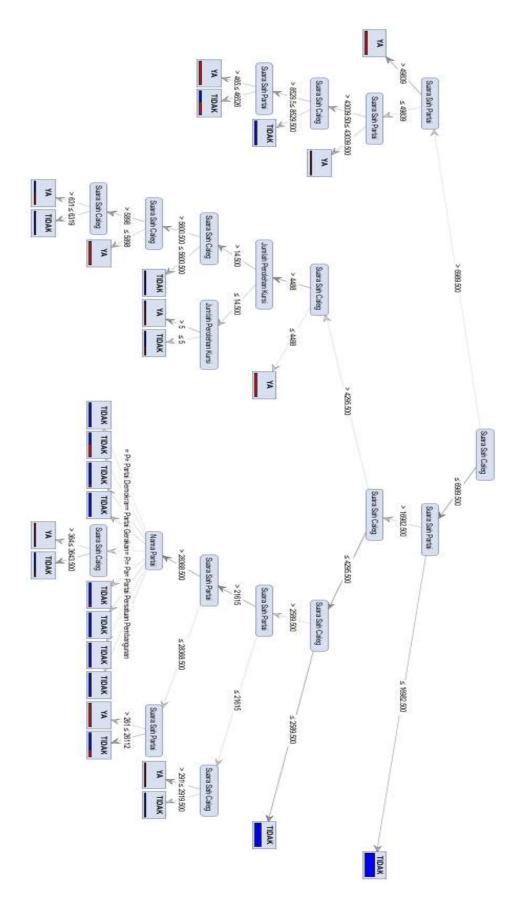
Suara sah caleg \leq 6989.500 = ((-32/2203 . log2 (32/2203) + (-2171/2203. log2 (2171/2203))

= 0.10949

Suara sah caleg > $6989.500 = ((-62/65 \text{ .} \log 2 (62/65) + (-3/65 \text{ .} \log 2 (3/65)))$

= 0.26983

 $E \ split \ suara \ sah \ caleg = ((2203/2268 \ (0.10949) + (65/2268 \ (0.26983)) = 0.11408$

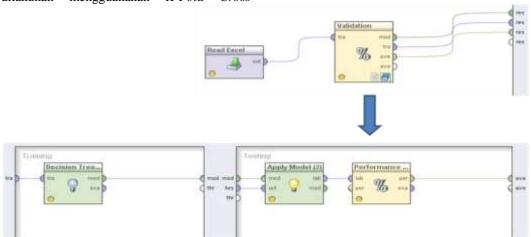

Gain suara sah caleg = 0.2488 - 0.11408= 0.1347

Perhitungan *entropy* dan *gain* untuk semua atribut dilakukan, untuk mendapatkan nilai gain tertinggi. Hasil perhitungan seluruh atribut terlihat pada tabel 4

Tabel 4 Informasi Gain Algoritma C4.5

Candidate	<u> </u>					
Split	Kasu	s YA	TID	AK En	tropy	Gain
suara sah						
caleg	6989.500	2203	32	2171	0.114001	0.124710
<=					0.114081	0.134719
>	6989.500	65	62	3	0.001222	0.157479
<=	4295.500	2162	14	2148	0.091322	0.157478
>	4295.500	106	80	26	0.147027	0.100072
<=	8529.500	2220	47	2173	0.147927	0.100873
>	8529.500	48	47	1	0.102002	0.145710
<=	4488	2166	18	2148	0.103082	0.145718
>	4488	102	76	26	0.00200	0.15500
<=	2589.500	2055	0	2055	0.09298	0.15582
>	2589.500	213	94	119	0.002022	0.154050
<=	2919.500	2078	2	2076	0.093822	0.154978
>	2919.500	190	92	98		0.41700
<=	5600.500	2185	23	2162	0.102994	0.145806
>	5600.500	83	71	12		
<=	5898	2190	27	2163	0.112752	0.136048
>	5898	78	67	11		
<=	6319	2198	29	2169	0.109622	0.139178
>	6319	70	65	5		
<=	3643.500	2132	11	2121	0.101675	0.147125
>	3643.500	136	83	53		
suara sah partai						
Partar <=	49839	1802	23	1779	0.204852	0.043948
>	49839	466	71	395	***************************************	
<=	16982.500	1338	0	1338	0.193707	0.055093
>	16982.500		94	836	3.270.01	0.055075
<=	43039.500	1758	20	1738	0.203941	0.044589
>	43039.500	510	74	436	0.200711	0.011307
<=	46526	1778	22	1756	0.205463	0.043337
>	46526	490	72	418	0.200 100	0.0 13331
	.0020	.,,	, 2	110		

					ŕ		
<=	21615	1452	5	1447	0.182026		0.06677
>	21615	816	89	727			
<=	28368.500	1571	12	1559	0.2055406		0.04339
>	28368.500	697	82	615			
<=	26112	1530	10	1520	0.204726		0.04407
>	26112	738	84	654			
jumlah peroleha kursi	n						
<=	14.500	2053	44	2009	0.209417		0.03938
>	14.500	215	50	165			
<=	5	1535	9	1526	0.202427		0.04637
>	5	733	85	648			
nama pa	rtai						0.08554
PAN		109	4	105	0.010907		
PDS		98	4	94	0.010631		
PDIP		111	11	100	0.022813		
	i Demokrat	112	32	80	0.042623		
Gerir		74	6	68	0.013246		
	i Golkar	112	7	105	0.016656		
PKS		101	18	83	0.030111		
PPR	N	85	0	85	0		
PPP		103	7	96	0.016271	 	



Gambar 3 Model Pohon Keputusan Algoritma C4.5

b. Pengujian

Sementara untuk pengujian yang dilakukan mengguanakan K-Fold Cross

Validation yang terlihat pada gambar dibawah

Gambar 4 Pengujian K-Fold Cross Validation Algoritma C4.5

Model klasifikasi bisa dievaluasi berdasarkan kriteria seperti tingkat akurasi, kecepatan, kehandalan, skabilitas, dan interpretabilitas(Vercellis, 2009). Mencari nilai akurasi dan AUC menggunakan model confusion matrix dan ROC (Receiver Operating Characteristic).

a. Confusion Matrix

Berikut tabel *Confusion Matrix* algoritma C4.5, dari tabel ini terlihat nilai akurasi yang didapat adalah 97,84%.

Tabel 5 Model counfusion matrix untuk Algoritma C4.5

accuracy: 97.84% +/- 0.96%	(milera: 97,84%)		
	true TIDAK	true VA	class precision
ored. TIDAK	2153	20	98.72%
ored. YA	21	66	75.88%
class recall	99.03%	78.21%	

Dari tabel diatas terlihat bahwa jumlah True Positive adalah 2153 record diklasifikasikan sebagai TIDAK terpilih dan False Negative sebanyak 28 record diklasifikasikan sebagai TIDAK terpilih tetapi YA terpilih. Berikutnya 66 record untuk True Negative (TN) diklasifikasikan sebagai YA

terpilih, dan 21 *record False Positive* (FP) diklasifikasin sebagai YA terpilih ternyata TIDAK.

b. Evaluasi ROC

Pada grafik ROC terlihat nilai AUC(*Area Under Curve*) sebesar 0.970 dengan nilai akurasi *Excellent Classification*.

Gambar 5 Nilai AUC dalam grafik ROC algoritma C4.5

V. KESIMPULAN

Hasil eksperimen dan evaluasi penelitian prediksi hasil pemilihan legislatif DPRD DKI Jakarta menggunakan algoritma C4.5 terbukti akurat, terlihat dari hasil yang didapat yaitu sebesar nilai akurasi sebesar 97.84% dan nilai AUC sebesar 0.970 dengan tingkat diagnosa *Excellent Classification*.

DAFTAR PUSTAKA

- Borisyuk, R., Borisyuk, G., Rallings, C., & thrasher, M. (2005). Forcesting the 2005 General Election: A Neural Network Approach. The British Journal of Politics & International Relations Volume 7, Issue 2, 145-299.
- Choi, J. H., & Han, S. T. (1999). Prediction of Election Results Using Discrimination of Non-Respondents.
- Dawson, C. W. (2009). Project in Computing and Information System A Student's Guide. England: Addison-Wesley.

- Gorunescu, F. (2011). Data Mining Concepts, Model and Technique. Berlin: Springer.
- Han, J., & Kamber, M. (2006). Data Mining Concepts and technique. San Francisco: Diane Cerra
- Moscato, P. Mathieson, L. Mendes, A., & Berretta, R. (2004). The Electronic Primaries: Predicting the U.S. Presidency Using Feature Selection with Safe Data Reduction.
- Sardini, N. H. (2011). Restorasi Penyelenggaraan Pemilu di Indonesia. Yogyakarta: Fajar Media Press
- Undang-Undang Republik Indonesia Nomor 3 Tahun 1999. Tentang: Pemilihan Umum.
- Vercellis, C. (2009). Business Inelligentce: Data Mining and Optimization for Decision Making. Southern Gate, Chichester, West Sussex: John Wiley & Sons, Ltd.
- Vishnuprasad, N. (2005). Building Predictive Models for Election Results In Indiana-an Application of Classification