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Abstract— Cross-Project Defect Prediction (CPDP) 
addresses the scarcity of defect data in new software 
projects by transferring knowledge from existing 
ones. However, domain shift between projects 
remains a major challenge. This study introduces a 
lightweight and practical CPDP pipeline based on 
traditional metric features, integrating domain 
adaptation (CORAL, TCA, TCA+), feature selection, 
and resampling techniques. Through 120 
configurations evaluated on multiple PROMISE 
datasets, we found that combining TCA or TCA+ with 
Synthetic Minority Over-sampling Technique 
combined with Edited Nearest Neighbors  
(SMOTEENN) consistently improved F1-Score and 
Recall on imbalanced datasets. LightGBM 
demonstrated the most stable performance across 
projects, while Logistic Regression yielded the highest 
MCC in specific cases. Principal Component Analysis  
(PCA)  visualizations supported the effectiveness of 
domain alignment. The proposed pipeline offers a 
reproducible, cost-efficient alternative to deep 
learning models and provides actionable insights for 
defect prediction in resource-constrained 
environments. 
 
Keywords: Cross-Project Prediction, Domain 
Adaption, Machine Learning, Metric-Based Feature, 
Smoteenn.  

 
Intisari— Cross-Project Defect Prediction (CPDP) 
menjadi solusi untuk mengatasi keterbatasan data 
cacat pada proyek perangkat lunak baru dengan 
mentransfer pengetahuan dari proyek lain. Namun, 
pergeseran domain antar proyek masih menjadi 
tantangan utama. Studi ini memperkenalkan 
pipeline CPDP yang ringan dan praktis berbasis 
fitur metrik tradisional, yang mengintegrasikan 
adaptasi domain (CORAL, TCA, TCA+), seleksi fitur, 
dan teknik resampling. Dari 120 konfigurasi yang 
dievaluasi pada beberapa dataset PROMISE, 
kombinasi TCA atau TCA+ dengan SMOTEENN 

terbukti secara konsisten meningkatkan F1-Score 
dan Recall pada dataset yang tidak seimbang. Model 
LightGBM menunjukkan performa paling stabil 
lintas proyek, sementara Regresi Logistik mencatat 
nilai MCC tertinggi pada beberapa kasus. Visualisasi 
PCA mengonfirmasi efektivitas penyelarasan 
domain. Pipeline yang diusulkan menawarkan 
alternatif yang dapat direproduksi dan hemat biaya 
dibanding pendekatan berbasis deep learning, serta 
memberikan wawasan praktis bagi implementasi 
prediksi cacat di lingkungan dengan sumber daya 
terbatas. 
 
Kata Kunci: Prediksi Lintas Proyek, Adaptasi 
Domain, Pembelajaran Mesin, Fitur Berbasis Metrik, 
Smoteenn.  
 

INTRODUCTION 
 

Software Defect Prediction (SDP) plays an 
important role in improving software quality by 
identifying modules at risk of defects before the 
testing phase (P. S. Kumar, Nayak, & Behera, 2022). 
Effective defect prediction enables testers to 
prioritize testing efforts, reduce costs, and enhance 
defect detection efficiency (Stradowski & Madeyski, 
2024). The traditional approach, Within-Project 
Defect Prediction (WPDP), relies on historical data 
from the same project. However, this approach is 
not feasible for new projects without defect history  
(Tao et al., 2024). In such cases, Cross-Project Defect 
Prediction (CPDP) becomes more practical, as it 
transfers knowledge from existing projects to a new 
target project (Sotto-Mayor & Kalech, 2024). 

Early CPDP studies, such as the influential 
work of Zimmermann et al. (2009), highlighted the 
difficulty of transferring models across projects due 
to substantial differences in feature distributions 
(Zimmermann, Nagappan, Gall, Giger, & Murphy, 
2009). Subsequent research further emphasized this 
challenge, commonly referred to as domain shift, 
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which occurs when the statistical properties of 
source and target projects differ significantly (Song 
et al., 2024; Vescan, Găceanu, & Şerban, 2024). 
Domain shift remains one of the central barriers to 
achieving reliable CPDP performance.  

To overcome this problem, recent studies 
explore semantic features through Abstract Syntax 
Tree (AST) representation combined with deep 
learning models such as Long Short-Term Memory 
(LSTM) and Convolutional Neural Network-
Bidirectional LSTM (CNN-BiLSTM) (Tao et al. 2024). 
reported a 2.9% improvement in F-measure 
through the integration of AST and LSTM, while the 
CNN-BiLSTM approach resulted in a 25% 
improvement in F1-score (Farid et al. 2021). 
Although effective, such methods rely on specialized 
toolchains and high resources, as well as a complex 
parameter tuning process (Ghinaya, Herteno, Faisal, 
Farmadi, & Indriani, 2024; Tao et al., 2024). 

In light of these limitations, this study 
proposes a lightweight CPDP pipeline based on 
traditional metric features. Unlike resource-
intensive deep learning models, the proposed 
approach is computationally efficient and easier to 
implement. The pipeline integrates domain 
adaptation techniques such as CORrelation 
ALignment (CORAL), Transfer Component Analysis 
(TCA), and its variant TCA+, along with feature 
selection methods (SelectKBest, Recursive Feature 
Elimination) and resampling strategies 
(SMOTEENN). It further leverages classical machine 
learning models, including Logistic Regression, 
Random Forest, and LightGBM, which remain 
competitive in many predictive tasks. 

Previous studies have shown the 
effectiveness of these components individually. For 
instance, TCA has been demonstrated to harmonize 
feature distributions and significantly improve AUC 
(Farid, Fathy, Eldin, & Abd-Elmegid, 2021; Haldar & 
Fernando Capretz, 2024; Ren, Peng, Zheng, Zou, & 
Gao, 2022). Similarly, the combination of Synthetic 
Minority Oversampling Technique (SMOTE) with 
feature selection has been effective in addressing 
class imbalance, improving G-mean and recall 
(Ghinaya et al., 2024; Sharma & Sadam, 2022; Tong, 
Liu, Wang, & Li, 2019). 

Building upon these insights, this study 
systematically evaluates 120 configurations of 
domain adaptation, feature selection, resampling, 
and classifiers across five open-source PROMISE 
datasets. The contribution of this work lies not in 
introducing new algorithms, but in the systematic 
construction and large-scale evaluation of a 
modular CPDP pipeline that unifies established 
techniques in a reproducible framework. This 
structured approach provides empirical insights 
into which configurations perform best under 
various conditions, offering practical guidance and 

a cost-efficient alternative to deep learning models 
for defect prediction in resource-constrained 
environments. 
 

MATERIALS AND METHODS 
 

To systematically evaluate the 
effectiveness of metric-based learning approaches 
for CPDP, this study constructs an experimental 
pipeline that combines various domain adaptation 
techniques, feature selection strategies, resampling 
methods, and classical machine learning models. 
The objective of this pipeline is to develop a 
lightweight yet practical framework that can be 
implemented in real-world environments with 
limited computational resources. Each component 
in the pipeline was chosen based on its prior success 
in handling specific challenges in CPDP, such as 
domain shift and class imbalance. The overall 
methodological framework is designed to allow a 
comprehensive analysis of how different 
configurations affect prediction performance across 
heterogeneous software projects. 

The process starts from the loading of 
source and target project data, followed by pre-
processing stages such as imputation and 
normalization. The source data is then processed 
through domain adaptation techniques such as 
CORAL, TCA, and TCA+ to harmonize the 
distribution between domains. After that, feature 
selection was performed to filter out the most 
relevant attributes, followed by an optional 
resampling technique SMOTEENN to handle class 
imbalance. The transformed data was used to train 
five classification models. The trained models were 
then used to predict defects in the target project. All 
evaluation results were extracted using five key 
metrics: F1-score, Recall, Matthews Correlation 
Coefficient (MCC), and Area Under the Receiver 
Operating Characteristic Curve (AUC). 

 

 
Source: (Research result, 2025) 

Figure 1. CPDP Flow 
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1. Data Pre-Processing 
The data used comes from open-source 

projects in the PROMISE repository, including 
Camel, Log4j, Xalan, Synapse, and Xerces. Each 
dataset contains software metric features as well as 
labels for the number of defects (bugs) per module. 
The labels were converted into a binary format: 1 if 
there is at least one defect, and 0 if there is none. 
Non-informative columns such as name, version, 
and name.1 were removed.  

Missing numerical features were imputed 
using the mean value, while categorical features (if 
present) were imputed using the mode and encoded 
with one-hot encoding. All features were then 
normalized using StandardScaler to avoid 
dominance of certain features and ensure stability 
of model training. 

 
Table 1. Dataset Statistic 

Dataset 
Total 

Instances 
Buggy 

Non-
Buggy 

% 
Buggy 

Camel-1.6 956 188 777 19.48 
Log4j-1.2 205 189 16 92.20 
Xerces-1.4 588 437 151 74.32 
Xalan-2.7 909 898 11 98.79 
Synapse-1.2 256 86 170 33.59 

Source: (Research result, 2025) 
 

Table 1 presents the summary statistics of 
the five project datasets used in this experiment. It 
can be seen that most of the datasets have an 
unbalanced label distribution, with the ratio of 
buggy modules ranging from 19% to almost 99%. 
This confirms the need for the application of class 
balancing techniques such as SMOTEENN in this 
CPDP experiment pipeline. 

 
2. Domain Adaptation 

Given the inherent heterogeneity between 
source and target projects in CPDP, discrepancies in 
feature distributions commonly referred to as 
domain shift pose a significant challenge to model 
generalization. To address this issue, the present 
study employs three domain adaptation techniques: 
CORAL, TCA, and its enhanced variant, TCA+. CORAL 
operates by aligning the covariance structures of 
the source and target domains through a linear 
transformation, independent of target labels.  

TCA mitigates distributional differences by 
projecting the data into a common latent space 
using a kernel-based optimization framework. 
TCA+ further refines this process by introducing a 
preliminary PCA step to suppress noise and 
enhance the salience of informative features. 
Notably, all domain adaptation procedures are 
applied exclusively to the feature space, without 
utilizing any label information from the target 
domain. 

 

3. Fiture Selection 
After domain adaptation, feature selection 

is performed to improve model efficiency and 
reduce the risk of overfitting. Two methods are 
used: SelectKBest based on chi-square score, and 
RFE based on Logistic Regression. SelectKBest 
selects the top 20 features based on their statistical 
relationship with the label, while RFE iteratively 
removes features with the lowest contribution to 
model performance. Feature selection was 
performed only on the source data, and then the 
same transformation was applied to the target data. 

 
4. Resampling  

A common problem caused by class 
imbalance with the amount of non-buggy data far 
outnumbering buggy in CPDP, can be resampled 
using the SMOTEENN method. This technique 
combines SMOTE, which generates synthetic data 
for the minority class, and Edited Nearest Neighbors 
(ENN), which cleans up potentially noisy majority 
data. Resampling is only applied to the source data 
after domain adaptation and feature selection. 

 
5. Model Training and Testing 

The processed source data was trained using 
five classical machine learning algorithms: Random 
Forest, Logistic Regression, Gradient Boosting, 
Extra Trees, and LightGBM. Models were 
implemented using default settings with minor 
parameter adjustments (n_estimators=100, 
max_iter=1000, random_state=123, n_jobs=-1) for 
consistency and efficiency. To evaluate the impact of 
various configurations on defect prediction 
performance, a total of 120 combinations were 
constructed from different domain adaptation, 
feature selection, and resampling techniques. All 
experiments were conducted using Python 3.10 in a 
Jupyter Notebook environment with key libraries 
such as scikit-learn, imbalanced-learn, and 
LightGBM. In each test case, one dataset served as 
the target (testing) project, while others were used 
for training, reflecting a realistic CPDP scenario with 
no labeled data in the target. A concise summary of 
the experimental environment, tools, datasets, and 
parameter configurations used throughout the 
study is provided in Table 2. 

 
Table 2. Summary of Experimental Environment 

and Configurations 
Aspect Details 

Programming 
Language 

Python 3.10 

Development 
Environment 

Jupyter Notebook 

Libraries Used scikit-learn, imbalanced-learn, 
lightgbm 
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Aspect Details 
Datasets PROMISE repository: Camel, 

Log4j, Xalan, Synapse (train), 
Xerces (target) 

CPDP Setting One project as target; others as 
source; no label used from target 

Models Used Random Forest, Logistic 
Regression, Gradient Boosting, 
Extra Trees, LightGBM 

Adjusted 
Parameters 

n_estimators=100, max_iter=1000, 
random_state=123, n_jobs=-1 

Hyperparameter 
Tuning 

Not performed (for 
reproducibility and efficiency) 

Total 
Configurations 

120 (4 domain adaptation × 3 
selection × 2 resampling × 5 
classifiers) 

Source: (Research result, 2025) 
 
Although no hyperparameter tuning was 

conducted to ensure replicability and 
computational efficiency, we acknowledge that 
tuning parameters such as tree depth, learning rate, 
or regularization terms could potentially enhance 
model performance. Techniques like grid search or 
Bayesian optimization might improve predictive 
accuracy, especially for models like LightGBM or 
Random Forest. However, this study focuses on 
demonstrating the robustness of the proposed 
pipeline under practical constraints, leaving tuning 
as a direction for future work. 
 

6. Performance Evaluation 
Model evaluation is performed by 

comparing the predicted results on the target 
project against the actual label. Five evaluation 
metrics were used: F1-score, Recall, MCC, and AUC. 
F1-score measures the balance between precision 
and recall, providing a harmonious representation 
of both metrics(P. H. Kumar & Bhat, 2024). F1-score 
provides a value between 0 and 1, where higher 
values indicate better performance. This metric is 
particularly useful in the context of software defect 
prediction as it provides a balance between the 
model's ability to identify defects (recall) and the 
accuracy of positive predictions 
(precision).(Albattah & Alzahrani, 2024). 

 

𝐹1 − 𝑠𝑐𝑜𝑟ⅇ = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙 
   (1) 

 
Recall indicates the model's ability to 

detect defect classes by measuring the proportion of 
true positives identified out of all actual positive 
instances. Recall is very important in software 
defect prediction as it measures the model's ability 
to capture all modules that are actually defective. 
 

𝑅ⅇ𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 
             (2) 

 

MCC provides an overall performance 
representation, especially on unbalanced data, by 
considering all elements of the confusion matrix. 
MCC yields a value between -1 and +1, where +1 
indicates a perfect prediction, 0 indicates a random 
prediction, and -1 indicates a completely wrong 
prediction. MCC is more informative and reliable 
than accuracy and F1-score, especially on 

unbalanced datasets (Chicco & Jurman, 2020). 

 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃 ×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃(𝑇𝑁+𝐹𝑁)
           (3) 

 
AUC measures the model's ability to discriminate 
classes probabilistically by evaluating the area 
under the ROC (Receiver Operating Characteristic) 
curve. AUC provides a value between 0 and 1, where 
a value of 0.5 indicates random performance, and a 
value close to 1 indicates excellent discrimination 
ability (Yang et al., 2021). 
 

𝐴𝑈𝐶 = ∫  
1

0
𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥))𝑑𝑥        (4) 

 
 To enable fair comparison across 
configurations and projects, we adopt a composite 
score that aggregates multiple evaluation metrics 
into a single value. Let 𝑀 = {𝑚1, 𝑚2, . . . , 𝑚𝑘} be the 
set of evaluation metrics considered (e.g., F1-score, 
Recall, AUC, and MCC). For each configuration ccc, 
the composite score is computed as: 
 

𝐶𝑆(𝑐) =
1

𝑘
∑ 𝑚̂𝑖(𝑐)𝑘

𝑖̇=1                    (5) 

 
 Where 𝑚̂𝑖(𝑐) is the normalized value of 

metric 𝑚𝑖  for configuration 𝑐. Each metric is min–
max normalized across all configurations within the 
same dataset to ensure comparability: 
 

𝑚̂𝑖(𝑐) =
𝑚𝑖(𝑐)−𝑚𝑖𝑛(𝑚𝑖)

𝑚𝑎𝑥(𝑚𝑖)−𝑚𝑖𝑛(𝑚𝑖)
     ..........(6) 

 
This normalization maps all metrics to the range 
[0,1]. The composite score thus represents the 
average relative performance of a configuration 
across all metrics. 

 
RESULTS AND DISCUSSION 

 
This experiment was designed to evaluate 

the effectiveness of traditional metric-based CPDP 
pipelines. A total of 120 combinations were 
explored of variations of four domain adaptation 
methods Baseline, CORAL, TCA, TCA+, two 
resampling techniques no resampling and 
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SMOTEENN, three feature selection approaches no 
selection, SelectKBest, and RFE, as well as five 
machine learning algorithms Random Forest, 
Logistic Regression, Gradient Boosting, Extra Trees, 
and LightGBM. The evaluation was conducted on 
four target datasets: Camel, Log4j, Synapse, and 
Xalan using five performance metrics: F1-Score, 
Recall, MCC, and AUC. 

 
1. Best Configuration for each Project 

To provide an overview of the best-
performing configurations, Table 3 summarizes the 
highest composite score achieved for each target 
project. Composite Score is calculated from the 
average of four key metrics: F1-score, Recall, AUC, 
and MCC. These configurations represent the 
optimal combination of domain adaptation, feature 
selection, classifier, and resampling strategy in the 
context of CPDP. Notably, TCA and TCA+ combined 
with SMOTE-ENN emerge consistently as effective 
strategies for domain alignment and class balance. 
LightGBM and Logistic Regression tend to dominate 
in datasets with extreme class imbalance (e.g., Log4j 
and Xalan), while Random Forest shows consistent 
stability in more balanced datasets such as Synapse. 
 

Table 3. Top-Performing Configurations Across 
Projects Based on Composite Score (calculated as 
the normalized mean of F1, Recall, AUC, and MCC) 

Mo
del 

Domain 
Adaptation 

Feat
ure 

Selec
tion 

Resa
mplin

g 

F1 Recall AU
C 

MCC Compo
site 

Score 

Gradien
t 
Boostin
g 

CORAL None SMOT
E-

ENN 

0.8 0.7
2 

0.82 0.46 0.9
1 

Gradien
t 
Boostin
g 

CORAL RFE SMOT
E-

ENN 

0.8 0.7
2 

0.82 0.46 0.9
1 

Extra 
Trees 

Baseline RFE SMOT
E-

ENN 

0.81 0.7
5 

0.78 0.42 0.8
9 

Extra 
Trees 

Baseline None SMOT
E-

ENN 

0.81 0.7
5 

0.78 0.42 0.8
9 

Rando
m 
Forest 

CORAL None SMOT
E-

ENN 

0.8 0.7
4 

0.8 0.39 0.8
7 

Source: (Research result, 2025) 
 
To examine variation and stability across 

datasets, Tables 4 to 7 present the top five 
configurations per target project, ranked by 
composite score. These allow further analysis of 
which classifiers and preprocessing combinations 
tend to generalize well in specific contexts. 

 

Table 4. Top Configurations for Camel Dataset 
Ranked by Composite Score 

Model 
Domain 
Adaptati

on 

Feature 
Selectio

n 

Resa
mplin

g 
F1 

Rec
all 

AU
C 

MC
C 

Compos
ite 

Score 
Logistic 

Regressio
n 

CORAL 
SelectK

Best 
SMOT
EENN 

0.67 
0.5
5 

0.6
9 

0.2
8 

0.73 

Logistic 
Regressio

n 
TCA+ 

SelectK
Best 

SMOT
EENN 

0.73 
0.6
7 

0.6
7 

0.1
9 

0.72 

Logistic 
Regressio

n 
Baseline 

SelectK
Best 

SMOT
EENN 

0.68 
0.5
6 

0.6
8 

0.2
6 

0.72 

Logistic 
Regressio

n 
Baseline RFE 

SMOT
EENN 

0.68 
0.5
6 

0.6
4 

0.2
6 

0.71 

Logistic 
Regressio

n 
Baseline None 

SMOT
EENN 

0.68 
0.5
6 

0.6
4 

0.2
6 

0.71 

Source: (Research result, 2025) 
 
Table 4 lists the highest-ranking 

configurations for the Camel dataset based on the 
composite performance score. Logistic Regression 
combined with SelectKBest or RFE appears 
frequently among the best configurations. This 
suggests that simpler models can still perform 
competitively on Camel when coupled with feature 
selection and resampling. 
 

Table 5. Top Configurations for Log4j Target 
Project Based on Composite Performance Score 

Model Domain 
Adaptati
on 

Featur
e 
Selecti
on 

Resampl
ing 

F1 Recal
l 

 
AU
C 

MC
C 

Compos
ite 

Score 

LightGB
M 

TCA Non
e 

SMOTEE
NN 

0.87 0.89 0.8 0.4
6 

0.93 

Rando
m 
Forest 

TCA RFE SMOTEE
NN 

0.87 0.92   0.7
7 

0.4
3 

0.9 

Rando
m 
Forest 

TCA Non
e 

SMOTEE
NN 

0.85 0.92 0.7
9 

0.3
2 

0.84 

LightGB
M 

TCA RFE SMOTEE
NN 

0.85 0.9 0.7
8 

0.3
2 

0.84 

Gradien
t 
Boostin
g 

TCA Sele
ctK
Best 

None 0.86 0.93 0.7
7 

0.3
1 

0.83 

Source: (Research result, 2025) 
 
Table 5 lists the five best model 

configurations for predicting defects in the Log4j 
dataset. LightGBM and Random Forest with TCA 
and SMOTE-ENN dominate the top results, 
highlighting their strong performance on datasets 
with severe imbalance like Log4j. 
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Table 6. Highest-Scoring Configurations for 
Synapse Dataset Using Composite Metric 

Model Domain 
Adaptatio
n 

Feature 
Selectio
n 

Resampl
ing 

F1 Reca
ll 

AU
C 

MC
C 

Compos
ite 

Score 
Gradien
t 
Boostin
g 

CORAL  Non
e 

SMOTEE
NN 

0.8 0.7
2 

0.8
2 

0.4
6 

0.91 

Gradien
t 
Boostin
g 

CORAL RFE SMOTEE
NN 

0.8 0.7
2 

0.8
2 

0.4
6 

0.91 

Extra 
Trees 

Baseline RFE SMOTEE
NN 

0.8
1 

0.7
5 

0.7
8 

0.4
2 

0.89 

Extra 
Trees 

Baseline None SMOTEE
NN 

0.8
1 

0.7
5 

0.7
8 

0.4
2 

0.89 

Random 
Forest 

CORAL None SMOTEE
NN 

0.8
0 

0.7
4 

0.8 0.3
9 

0.87 

Source: (Research result, 2025) 
 
Table 6 presents the top five configurations 

tested on the Synapse project. Gradient Boosting 
and Extra Trees consistently appear at the top, with 
CORAL and SMOTE-ENN offering improved domain 
alignment and class balance. This reinforces the 
importance of domain adaptation in more balanced 
datasets. 

 
Table 7. Top Model and Preprocessing 

Combinations for Xalan Project Ranked by 
Composite Score 

Model 
Domain 
Adaptati

on 

Feature 
Selectio

n 

Resampl
ing 

F1 
Recal

l 
AUC 

MC
C 

Compo
site 

Score 
LightGB

M 
TCA+ None 

SMOT
EENN 

0.8
6 

0.89 
0.7
7 

0.4
2 

0.90 

LightGB
M 

TCA+ RFE 
SMOT
EENN 

0.8
6 

0.89 
0.7
7 

0.4
2 

0.90 

Logistic 
Regressi

on 

Baseli
ne 

SelectKB
est 

SMOT
EENN 

0.8
2 

0.78 
0.8
0 

0.3
8 

0.88 

Gradient 
Boosting 

TCA+ None 
SMOT
EENN 

0.8
5 

0.87 
0.7
5 

0.3
7 

0.87 

Gradient 
Boosting 

TCA+ RFE 
SMOT
EENN 

0.8
5 

0.87 
0.7
5 

0.3
7 

0.87 

Source: (Research result, 2025) 
 
Table 7 showcases the configurations 

achieving the highest overall scores when applied to 
the Xalan dataset. LightGBM and Gradient Boosting 
combined with TCA+ and SMOTE-ENN appear 
frequently, indicating their robustness in handling 
domain shift and class imbalance. The composition 
of top-performing pipelines across all datasets 
emphasizes the contextual nature of configuration 
effectiveness. While ensemble-based classifiers 
such as LightGBM and Gradient Boosting often 
dominate, traditional models like Logistic 
Regression can perform competitively when 
supported by appropriate feature selection and 

domain adaptation. These results reinforce the 
study’s core contribution that metric-based and 
computationally lightweight CPDP pipelines can 
achieve robust performance across heterogeneous 
software projects. Overall, the variation across 
datasets emphasizes that CPDP performance is 
highly sensitive to dataset characteristics and the 
alignment between source and target distributions 
validating the necessity of flexible and modular 
pipelines. 

 
2. Component Analysis Pipeline  

TCA and TCA+ were most effective at 
reducing domain shift, especially on dataset pairs 
with high distributional differences. Baseline and 
CORAL produced fluctuating performance. 
SelectKBest showed stable and superior 
performance when used with tree-based models 
and numerical data. RFE excels on Logistic 
Regression but is more sensitive to noise and high 
dimensionality. SMOTEENN significantly improves 
Recall and G-Mean on imbalanced datasets such as 
Camel and Synapse. However, its impact on MCC 
and AUC is not always positive, signaling a trade-off 
between sensitivity and specificity. LightGBM 
excelled in the number of best configurations 
overall, indicating generalization ability across 
domains. Logistic Regression yields the highest MCC 
values on a given project, suggesting that classical 
models remain relevant in the CPDP. 

The consistently strong performance of 
configurations involving TCA and SMOTEENN can 
be attributed to their complementary nature: TCA 
reduces distributional shift between source and 
target domains, facilitating better generalization, 
while SMOTEENN improves recall by addressing 
class imbalance through oversampling and noise 
reduction. Feature selection methods such as 
SelectKBest enhanced model focus on the most 
predictive attributes, particularly in high-
dimensional spaces like Camel. Ensemble classifiers 
like LightGBM and Gradient Boosting benefit from 
their ability to capture nonlinear patterns and resist 
overfitting, especially when paired with TCA. In 
contrast, Logistic Regression performed best when 
dimensionality was reduced via feature selection, as 
it is more sensitive to irrelevant features and 
domain variance. 

 
3. Visualization of Performance Distribution  

To complement the tabular results, several 
visualizations were employed to highlight patterns 
in model behavior, metric relationships, and 
resampling outcomes across configurations. These 
figures provide deeper insights into model 
performance variation across techniques and 
datasets. 
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Source: (Research result, 2025) 

Figure 2. F1-score distribution for 
configurations with SMOTEENN resampling. 

 
Figure 2 presents a boxplot of F1-scores for 

all configurations using SMOTEENN. The results 
indicate that the majority of models achieve F1-
scores above 0.75, with minimal variance, showing 
the consistency and reliability of SMOTE-ENN. 
However, a few outliers suggest sensitivity when 
paired with suboptimal model or domain 
adaptation choices. 

 

 
Source: (Research result, 2025) 

Figure 3. Average F1-Score per Model vs. 
Adaptation Domain 

 
Figure 3 visualizes how each classifier 

performs under different domain adaptation 
settings. LightGBM and Gradient Boosting show 
high F1-scores across Baseline, TCA, and CORAL, 
confirming their resilience to domain shift. 
Meanwhile, Logistic Regression significantly 
underperforms with TCA and TCA+, indicating 
lower adaptability in those scenarios. 

 
Source: (Research result, 2025) 

Figure 4. F1 per Model for each Dataset 

The four subplots in Figure 4 display per-model 
F1 performance for each target dataset. LightGBM 
and Extra Trees maintain strong and consistent 
performance across datasets, while Logistic 
Regression and Random Forest exhibit greater 
variability, particularly in Xalan and Camel. These 
findings reinforce the need for context-specific 
model tuning in CPDP. 

 
4. Visualization of Domain Distribution 

Projection PCA 
Understanding domain shift is crucial in 

CPDP. Figure 5 employs PCA to visualize feature 
distributions of the source and target projects 
before and after applying Transfer Component 
Analysis (TCA). This allows us to assess the 
effectiveness of domain adaptation visually, 
complementing the quantitative evaluation. 

  
(a) Xalan Dataset (b) Log4j Dataset 

  
(c) Camel Dataset (d) Synapse Dataset 

Source: (Research result, 2025) 
Figure 5. PCA visualization of source–target 

domains before and after TCA, illustrating that TCA 
effectively reduces distributional shift and explains 
the observed improvements in CPDP performance. 
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Each subfigure 5(a–d) corresponds to a 

dataset. In the pre-TCA plots, there is a clear 
separation between source and target domains, 
implying strong domain divergence: Xalan 5(a): The 
source data clusters densely in one region, while the 
target spreads more widely. Log4j 5(b): Shows even 
more separation, especially along PC1. Camel and 
Synapse 5(c, d): Source and target clusters are 
nearly disjoint. In contrast, the post-TCA projections 
demonstrate that the domains become much more 
aligned, indicated by overlapping clusters in PC1-
PC2 space. This visual confirmation explains the 
performance improvements of TCA in the previous 
tables (e.g., Tables 5 and 7), where it significantly 
contributed to higher composite scores. These 
projections clearly show that TCA effectively 
reduces distributional shift, a key challenge in CPDP. 
This supports the empirical results where 
configurations with TCA or TCA+ achieved superior 
performance. 

To complement the insights from domain 
alignment, the subsequent figures (Figures 6–8) 
explore the interrelation between evaluation 
metrics and model performance patterns. These 
visualizations help explain why certain models and 
configurations consistently achieve superior results 
in CPDP settings. 

 
Source: (Research result, 2025) 

Figure 6. Correlation between Evaluation Metrics 
 
Figure 6 shows a correlation heatmap 

among the evaluation metrics. F1, Recall, and G-
Mean are strongly correlated (0.97–1.00), which 
implies that models optimizing one of them tend to 
improve others. Interestingly, AUC and MCC have 
lower or negative correlation with these metrics, 
highlighting their independent behavior and 
importance for multi-perspective evaluation. 

 

 
Source: (Research result, 2025) 
Figure 7. Number of Model Appearances in Top-20 

Based on F1-Score 
 
This bar chart on Figur 7 shows the 

frequency of each model in the top 20 
configurations based on F1-score. LightGBM 
dominates, reflecting its robustness and 
generalization across different target projects. 
Logistic Regression, despite being simple, also 
appears frequently — confirming its continued 
relevance in CPDP when paired with proper 
preprocessing. 

 
Source: (Research result, 2025) 

Figure 8. Comparison of Average Evaluation 
Metrics per Model 

 
The final comparison in Figure 8 plots 

average metric values per model. LightGBM leads 
overall, while Gradient Boosting shows stronger G-
Measure and Logistic Regression ranks best in MCC. 
This indicates that no single model dominates 
across all metrics, emphasizing the importance of 
multi-metric evaluation in defect prediction. 

These results confirm that traditional 
pipeline-based CPDP can provide competitive 
prediction performance against complex AST-based 
or deep learning approaches. The integration of 
domain adaptation TCA, SMOTEENN resampling, 
SelectKBest feature selection, and models such as 
LightGBM can be a practical solution for 
organizations with computational limitations. The 
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effectiveness of TCA in aligning feature 
distributions across projects is visually and 
quantitatively proven, while the dominance of 
LightGBM in the best configuration supports the 
claim that boosting models have high domain 
adaptability. 

 
5. Performance Comparison with TLSTM 

To further contextualize the performance 
of the proposed pipeline, Table 7 compares our 
result on the Camel→Xerces configuration with a 
recent deep learning-based approach (TLSTM) 
introduced by (Tao et al., 2024). 

 
Table 8. Summary Comparison of Proposed Model 

and Deep Learning-based CPDP (with statistical 
significance testing) 

Model Approach 
Type 

Feature 
Type 

Technique F1 
(Camel→Xerce

s) 
This 

Study 
Traditiona
l ML + DA 
(Logistic 

Regression
) 

Metric-
based 

TCA+ + 
SMOTEENN

+ 
SelectKBest

  

0.73 

TLSTM Deep 
Learning 
(LSTM) 

Semantic
-based 
(AST) 

TLSTM 
(AST + 

Transfer 
Learning) 

0.747 

Source: (Research result, 2025; (Tao et al., 2024) 

 
While TLSTM achieves a slightly higher F1-

score of 0.747, our traditional metric-based pipeline 
yields a close score of 0.730 using Logistic 
Regression combined with TCA+, SMOTEENN, and 
SelectKBest. Although formal statistical significance 
testing was not conducted, these results indicate 
that the proposed approach can achieve 
performance that is practically competitive with 
TLSTM, while offering lower computational cost 
and simpler implementation. 

 
CONCLUSION 

 
This research demonstrates that 

traditional metric-based CPDP pipelines combining 
domain adaptation, feature selection, resampling, 
and classical machine learning models can still 
deliver competitive prediction performance, 
particularly in new software projects where 
historical defect data is unavailable and domain 
shift is prominent. Among the 120 combinations 
tested, techniques such as TCA and TCA+ proved 
effective in aligning feature distributions across 
domains, contributing to notable improvements in 
F1-Score, Recall, and G-Mean. The SMOTEENN 
resampling method also improved the detection of 
minority (buggy) instances without destabilizing 
other performance metrics. LightGBM and Logistic 

Regression emerged as the most consistent and 
reliable models, with the best configuration 
achieving a composite score of up to 0.812 on the 
Log4j project. PCA visualizations further support 
the effectiveness of domain alignment, while 
correlation analysis confirmed the value of using 
multiple evaluation metrics to ensure unbiased 
assessment. 

The primary contribution of this study lies 
in offering a lightweight, reproducible, and easily 
deployable CPDP solution that does not depend on 
deep learning or resource-intensive processing. 
This makes the proposed pipeline highly applicable 
in industrial contexts, particularly for small to 
medium software teams or organizations operating 
under limited infrastructure or tight release cycles. 
In practical terms, this pipeline can be integrated 
into existing CI/CD workflows, used as a pre-testing 
quality gate, or embedded in automated QA systems 
to prioritize modules for further testing or code 
review. Its low complexity enables easier debugging 
and transparency, which are often critical in 
industrial settings. 

Future work may explore hybrid pipelines 
that combine lightweight semantic features with 
metric-based learning, validation on large-scale 
industrial datasets, and the integration of AutoML 
and explainability modules to further enhance 
adoption, scalability, and trustworthiness in real-
world software engineering environments.. 
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