

Techno Nusa Mandiri: Journal of Computing and Information Technology
Vol. 22, No. 2 September 2025 | DOI: https://doi.org/10.33480/techno.v22i2.6854 125

P-ISSN: 1978-2136 | E-ISSN: 2527-676X
Techno Nusa Mandiri : Journal of Computing and Information Technology

As an Accredited Journal Rank 4 based on Surat Keputusan Dirjen Risbang SK Nomor 85/M/KPT/2020

A LIGHTWEIGHT AND PRACTICAL PIPELINE FOR CROSS-PROJECT
DEFECT PREDICTION USING METRIC-BASED LEARNING

Novia Heriyani1*; Agus Subekti2

Computer Science1, 2

Universitas Nusa Mandiri, Jakarta,Indonesia1, 2
https://www.nusamandiri.ac.id/1, 2

14230034@nusamandiri.ac.id1*, agus@nusamandiri.ac.id2
(*) Corresponding Author

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.

Abstract— Cross-Project Defect Prediction (CPDP)
addresses the scarcity of defect data in new software
projects by transferring knowledge from existing
ones. However, domain shift between projects
remains a major challenge. This study introduces a
lightweight and practical CPDP pipeline based on
traditional metric features, integrating domain
adaptation (CORAL, TCA, TCA+), feature selection,
and resampling techniques. Through 120
configurations evaluated on multiple PROMISE
datasets, we found that combining TCA or TCA+ with
Synthetic Minority Over-sampling Technique
combined with Edited Nearest Neighbors
(SMOTEENN) consistently improved F1-Score and
Recall on imbalanced datasets. LightGBM
demonstrated the most stable performance across
projects, while Logistic Regression yielded the highest
MCC in specific cases. Principal Component Analysis
(PCA) visualizations supported the effectiveness of
domain alignment. The proposed pipeline offers a
reproducible, cost-efficient alternative to deep
learning models and provides actionable insights for
defect prediction in resource-constrained
environments.

Keywords: Cross-Project Prediction, Domain
Adaption, Machine Learning, Metric-Based Feature,
Smoteenn.

Intisari— Cross-Project Defect Prediction (CPDP)
menjadi solusi untuk mengatasi keterbatasan data
cacat pada proyek perangkat lunak baru dengan
mentransfer pengetahuan dari proyek lain. Namun,
pergeseran domain antar proyek masih menjadi
tantangan utama. Studi ini memperkenalkan
pipeline CPDP yang ringan dan praktis berbasis
fitur metrik tradisional, yang mengintegrasikan
adaptasi domain (CORAL, TCA, TCA+), seleksi fitur,
dan teknik resampling. Dari 120 konfigurasi yang
dievaluasi pada beberapa dataset PROMISE,
kombinasi TCA atau TCA+ dengan SMOTEENN

terbukti secara konsisten meningkatkan F1-Score
dan Recall pada dataset yang tidak seimbang. Model
LightGBM menunjukkan performa paling stabil
lintas proyek, sementara Regresi Logistik mencatat
nilai MCC tertinggi pada beberapa kasus. Visualisasi
PCA mengonfirmasi efektivitas penyelarasan
domain. Pipeline yang diusulkan menawarkan
alternatif yang dapat direproduksi dan hemat biaya
dibanding pendekatan berbasis deep learning, serta
memberikan wawasan praktis bagi implementasi
prediksi cacat di lingkungan dengan sumber daya
terbatas.

Kata Kunci: Prediksi Lintas Proyek, Adaptasi
Domain, Pembelajaran Mesin, Fitur Berbasis Metrik,
Smoteenn.

INTRODUCTION

Software Defect Prediction (SDP) plays an
important role in improving software quality by
identifying modules at risk of defects before the
testing phase (P. S. Kumar, Nayak, & Behera, 2022).
Effective defect prediction enables testers to
prioritize testing efforts, reduce costs, and enhance
defect detection efficiency (Stradowski & Madeyski,
2024). The traditional approach, Within-Project
Defect Prediction (WPDP), relies on historical data
from the same project. However, this approach is
not feasible for new projects without defect history
(Tao et al., 2024). In such cases, Cross-Project Defect
Prediction (CPDP) becomes more practical, as it
transfers knowledge from existing projects to a new
target project (Sotto-Mayor & Kalech, 2024).

Early CPDP studies, such as the influential
work of Zimmermann et al. (2009), highlighted the
difficulty of transferring models across projects due
to substantial differences in feature distributions
(Zimmermann, Nagappan, Gall, Giger, & Murphy,
2009). Subsequent research further emphasized this
challenge, commonly referred to as domain shift,

http://creativecommons.org/licenses/by-nc/4.0/

Techno Nusa Mandiri: Journal of Computing and Information Technology
Vol. 22, No. 2 September 2025 | DOI https://doi.org/10.33480/techno.v22i2.6854

126

P-ISSN: 1978-2136 | E-ISSN: 2527-676X
Techno Nusa Mandiri : Journal of Computing and Information Technology
As an Accredited Journal Rank 4 based on Surat Keputusan Dirjen Risbang SK Nomor 85/M/KPT/2020

which occurs when the statistical properties of
source and target projects differ significantly (Song
et al., 2024; Vescan, Găceanu, & Şerban, 2024).
Domain shift remains one of the central barriers to
achieving reliable CPDP performance.

To overcome this problem, recent studies
explore semantic features through Abstract Syntax
Tree (AST) representation combined with deep
learning models such as Long Short-Term Memory
(LSTM) and Convolutional Neural Network-
Bidirectional LSTM (CNN-BiLSTM) (Tao et al. 2024).
reported a 2.9% improvement in F-measure
through the integration of AST and LSTM, while the
CNN-BiLSTM approach resulted in a 25%
improvement in F1-score (Farid et al. 2021).
Although effective, such methods rely on specialized
toolchains and high resources, as well as a complex
parameter tuning process (Ghinaya, Herteno, Faisal,
Farmadi, & Indriani, 2024; Tao et al., 2024).

In light of these limitations, this study
proposes a lightweight CPDP pipeline based on
traditional metric features. Unlike resource-
intensive deep learning models, the proposed
approach is computationally efficient and easier to
implement. The pipeline integrates domain
adaptation techniques such as CORrelation
ALignment (CORAL), Transfer Component Analysis
(TCA), and its variant TCA+, along with feature
selection methods (SelectKBest, Recursive Feature
Elimination) and resampling strategies
(SMOTEENN). It further leverages classical machine
learning models, including Logistic Regression,
Random Forest, and LightGBM, which remain
competitive in many predictive tasks.

Previous studies have shown the
effectiveness of these components individually. For
instance, TCA has been demonstrated to harmonize
feature distributions and significantly improve AUC
(Farid, Fathy, Eldin, & Abd-Elmegid, 2021; Haldar &
Fernando Capretz, 2024; Ren, Peng, Zheng, Zou, &
Gao, 2022). Similarly, the combination of Synthetic
Minority Oversampling Technique (SMOTE) with
feature selection has been effective in addressing
class imbalance, improving G-mean and recall
(Ghinaya et al., 2024; Sharma & Sadam, 2022; Tong,
Liu, Wang, & Li, 2019).

Building upon these insights, this study
systematically evaluates 120 configurations of
domain adaptation, feature selection, resampling,
and classifiers across five open-source PROMISE
datasets. The contribution of this work lies not in
introducing new algorithms, but in the systematic
construction and large-scale evaluation of a
modular CPDP pipeline that unifies established
techniques in a reproducible framework. This
structured approach provides empirical insights
into which configurations perform best under
various conditions, offering practical guidance and

a cost-efficient alternative to deep learning models
for defect prediction in resource-constrained
environments.

MATERIALS AND METHODS

To systematically evaluate the
effectiveness of metric-based learning approaches
for CPDP, this study constructs an experimental
pipeline that combines various domain adaptation
techniques, feature selection strategies, resampling
methods, and classical machine learning models.
The objective of this pipeline is to develop a
lightweight yet practical framework that can be
implemented in real-world environments with
limited computational resources. Each component
in the pipeline was chosen based on its prior success
in handling specific challenges in CPDP, such as
domain shift and class imbalance. The overall
methodological framework is designed to allow a
comprehensive analysis of how different
configurations affect prediction performance across
heterogeneous software projects.

The process starts from the loading of
source and target project data, followed by pre-
processing stages such as imputation and
normalization. The source data is then processed
through domain adaptation techniques such as
CORAL, TCA, and TCA+ to harmonize the
distribution between domains. After that, feature
selection was performed to filter out the most
relevant attributes, followed by an optional
resampling technique SMOTEENN to handle class
imbalance. The transformed data was used to train
five classification models. The trained models were
then used to predict defects in the target project. All
evaluation results were extracted using five key
metrics: F1-score, Recall, Matthews Correlation
Coefficient (MCC), and Area Under the Receiver
Operating Characteristic Curve (AUC).

Source: (Research result, 2025)

Figure 1. CPDP Flow

Techno Nusa Mandiri: Journal of Computing and Information Technology
Vol. 22, No. 2 September 2025 | DOI: https://doi.org/10.33480/techno.v22i2.6854 127

P-ISSN: 1978-2136 | E-ISSN: 2527-676X
Techno Nusa Mandiri : Journal of Computing and Information Technology

As an Accredited Journal Rank 4 based on Surat Keputusan Dirjen Risbang SK Nomor 85/M/KPT/2020

1. Data Pre-Processing
The data used comes from open-source

projects in the PROMISE repository, including
Camel, Log4j, Xalan, Synapse, and Xerces. Each
dataset contains software metric features as well as
labels for the number of defects (bugs) per module.
The labels were converted into a binary format: 1 if
there is at least one defect, and 0 if there is none.
Non-informative columns such as name, version,
and name.1 were removed.

Missing numerical features were imputed
using the mean value, while categorical features (if
present) were imputed using the mode and encoded
with one-hot encoding. All features were then
normalized using StandardScaler to avoid
dominance of certain features and ensure stability
of model training.

Table 1. Dataset Statistic

Dataset
Total

Instances
Buggy

Non-
Buggy

%
Buggy

Camel-1.6 956 188 777 19.48
Log4j-1.2 205 189 16 92.20
Xerces-1.4 588 437 151 74.32
Xalan-2.7 909 898 11 98.79
Synapse-1.2 256 86 170 33.59

Source: (Research result, 2025)

Table 1 presents the summary statistics of
the five project datasets used in this experiment. It
can be seen that most of the datasets have an
unbalanced label distribution, with the ratio of
buggy modules ranging from 19% to almost 99%.
This confirms the need for the application of class
balancing techniques such as SMOTEENN in this
CPDP experiment pipeline.

2. Domain Adaptation

Given the inherent heterogeneity between
source and target projects in CPDP, discrepancies in
feature distributions commonly referred to as
domain shift pose a significant challenge to model
generalization. To address this issue, the present
study employs three domain adaptation techniques:
CORAL, TCA, and its enhanced variant, TCA+. CORAL
operates by aligning the covariance structures of
the source and target domains through a linear
transformation, independent of target labels.

TCA mitigates distributional differences by
projecting the data into a common latent space
using a kernel-based optimization framework.
TCA+ further refines this process by introducing a
preliminary PCA step to suppress noise and
enhance the salience of informative features.
Notably, all domain adaptation procedures are
applied exclusively to the feature space, without
utilizing any label information from the target
domain.

3. Fiture Selection
After domain adaptation, feature selection

is performed to improve model efficiency and
reduce the risk of overfitting. Two methods are
used: SelectKBest based on chi-square score, and
RFE based on Logistic Regression. SelectKBest
selects the top 20 features based on their statistical
relationship with the label, while RFE iteratively
removes features with the lowest contribution to
model performance. Feature selection was
performed only on the source data, and then the
same transformation was applied to the target data.

4. Resampling

A common problem caused by class
imbalance with the amount of non-buggy data far
outnumbering buggy in CPDP, can be resampled
using the SMOTEENN method. This technique
combines SMOTE, which generates synthetic data
for the minority class, and Edited Nearest Neighbors
(ENN), which cleans up potentially noisy majority
data. Resampling is only applied to the source data
after domain adaptation and feature selection.

5. Model Training and Testing

The processed source data was trained using
five classical machine learning algorithms: Random
Forest, Logistic Regression, Gradient Boosting,
Extra Trees, and LightGBM. Models were
implemented using default settings with minor
parameter adjustments (n_estimators=100,
max_iter=1000, random_state=123, n_jobs=-1) for
consistency and efficiency. To evaluate the impact of
various configurations on defect prediction
performance, a total of 120 combinations were
constructed from different domain adaptation,
feature selection, and resampling techniques. All
experiments were conducted using Python 3.10 in a
Jupyter Notebook environment with key libraries
such as scikit-learn, imbalanced-learn, and
LightGBM. In each test case, one dataset served as
the target (testing) project, while others were used
for training, reflecting a realistic CPDP scenario with
no labeled data in the target. A concise summary of
the experimental environment, tools, datasets, and
parameter configurations used throughout the
study is provided in Table 2.

Table 2. Summary of Experimental Environment

and Configurations
Aspect Details

Programming
Language

Python 3.10

Development
Environment

Jupyter Notebook

Libraries Used scikit-learn, imbalanced-learn,
lightgbm

Techno Nusa Mandiri: Journal of Computing and Information Technology
Vol. 22, No. 2 September 2025 | DOI https://doi.org/10.33480/techno.v22i2.6854

128

P-ISSN: 1978-2136 | E-ISSN: 2527-676X
Techno Nusa Mandiri : Journal of Computing and Information Technology
As an Accredited Journal Rank 4 based on Surat Keputusan Dirjen Risbang SK Nomor 85/M/KPT/2020

Aspect Details
Datasets PROMISE repository: Camel,

Log4j, Xalan, Synapse (train),
Xerces (target)

CPDP Setting One project as target; others as
source; no label used from target

Models Used Random Forest, Logistic
Regression, Gradient Boosting,
Extra Trees, LightGBM

Adjusted
Parameters

n_estimators=100, max_iter=1000,
random_state=123, n_jobs=-1

Hyperparameter
Tuning

Not performed (for
reproducibility and efficiency)

Total
Configurations

120 (4 domain adaptation × 3
selection × 2 resampling × 5
classifiers)

Source: (Research result, 2025)

Although no hyperparameter tuning was

conducted to ensure replicability and
computational efficiency, we acknowledge that
tuning parameters such as tree depth, learning rate,
or regularization terms could potentially enhance
model performance. Techniques like grid search or
Bayesian optimization might improve predictive
accuracy, especially for models like LightGBM or
Random Forest. However, this study focuses on
demonstrating the robustness of the proposed
pipeline under practical constraints, leaving tuning
as a direction for future work.

6. Performance Evaluation
Model evaluation is performed by

comparing the predicted results on the target
project against the actual label. Five evaluation
metrics were used: F1-score, Recall, MCC, and AUC.
F1-score measures the balance between precision
and recall, providing a harmonious representation
of both metrics(P. H. Kumar & Bhat, 2024). F1-score
provides a value between 0 and 1, where higher
values indicate better performance. This metric is
particularly useful in the context of software defect
prediction as it provides a balance between the
model's ability to identify defects (recall) and the
accuracy of positive predictions
(precision).(Albattah & Alzahrani, 2024).

𝐹1 − 𝑠𝑐𝑜𝑟ⅇ = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 (1)

Recall indicates the model's ability to

detect defect classes by measuring the proportion of
true positives identified out of all actual positive
instances. Recall is very important in software
defect prediction as it measures the model's ability
to capture all modules that are actually defective.

𝑅ⅇ𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

MCC provides an overall performance
representation, especially on unbalanced data, by
considering all elements of the confusion matrix.
MCC yields a value between -1 and +1, where +1
indicates a perfect prediction, 0 indicates a random
prediction, and -1 indicates a completely wrong
prediction. MCC is more informative and reliable
than accuracy and F1-score, especially on

unbalanced datasets (Chicco & Jurman, 2020).

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃 ×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃(𝑇𝑁+𝐹𝑁)
 (3)

AUC measures the model's ability to discriminate
classes probabilistically by evaluating the area
under the ROC (Receiver Operating Characteristic)
curve. AUC provides a value between 0 and 1, where
a value of 0.5 indicates random performance, and a
value close to 1 indicates excellent discrimination
ability (Yang et al., 2021).

𝐴𝑈𝐶 = ∫
1

0
𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥))𝑑𝑥 (4)

 To enable fair comparison across
configurations and projects, we adopt a composite
score that aggregates multiple evaluation metrics
into a single value. Let 𝑀 = {𝑚1, 𝑚2, . . . , 𝑚𝑘} be the
set of evaluation metrics considered (e.g., F1-score,
Recall, AUC, and MCC). For each configuration ccc,
the composite score is computed as:

𝐶𝑆(𝑐) =
1

𝑘
∑ 𝑚̂𝑖(𝑐)𝑘

𝑖̇=1 (5)

 Where 𝑚̂𝑖(𝑐) is the normalized value of

metric 𝑚𝑖 for configuration 𝑐. Each metric is min–
max normalized across all configurations within the
same dataset to ensure comparability:

𝑚̂𝑖(𝑐) =
𝑚𝑖(𝑐)−𝑚𝑖𝑛(𝑚𝑖)

𝑚𝑎𝑥(𝑚𝑖)−𝑚𝑖𝑛(𝑚𝑖)
 (6)

This normalization maps all metrics to the range
[0,1]. The composite score thus represents the
average relative performance of a configuration
across all metrics.

RESULTS AND DISCUSSION

This experiment was designed to evaluate

the effectiveness of traditional metric-based CPDP
pipelines. A total of 120 combinations were
explored of variations of four domain adaptation
methods Baseline, CORAL, TCA, TCA+, two
resampling techniques no resampling and

Techno Nusa Mandiri: Journal of Computing and Information Technology
Vol. 22, No. 2 September 2025 | DOI: https://doi.org/10.33480/techno.v22i2.6854 129

P-ISSN: 1978-2136 | E-ISSN: 2527-676X
Techno Nusa Mandiri : Journal of Computing and Information Technology

As an Accredited Journal Rank 4 based on Surat Keputusan Dirjen Risbang SK Nomor 85/M/KPT/2020

SMOTEENN, three feature selection approaches no
selection, SelectKBest, and RFE, as well as five
machine learning algorithms Random Forest,
Logistic Regression, Gradient Boosting, Extra Trees,
and LightGBM. The evaluation was conducted on
four target datasets: Camel, Log4j, Synapse, and
Xalan using five performance metrics: F1-Score,
Recall, MCC, and AUC.

1. Best Configuration for each Project

To provide an overview of the best-
performing configurations, Table 3 summarizes the
highest composite score achieved for each target
project. Composite Score is calculated from the
average of four key metrics: F1-score, Recall, AUC,
and MCC. These configurations represent the
optimal combination of domain adaptation, feature
selection, classifier, and resampling strategy in the
context of CPDP. Notably, TCA and TCA+ combined
with SMOTE-ENN emerge consistently as effective
strategies for domain alignment and class balance.
LightGBM and Logistic Regression tend to dominate
in datasets with extreme class imbalance (e.g., Log4j
and Xalan), while Random Forest shows consistent
stability in more balanced datasets such as Synapse.

Table 3. Top-Performing Configurations Across
Projects Based on Composite Score (calculated as
the normalized mean of F1, Recall, AUC, and MCC)

Mo
del

Domain
Adaptation

Feat
ure

Selec
tion

Resa
mplin

g

F1 Recall AU
C

MCC Compo
site

Score

Gradien
t
Boostin
g

CORAL None SMOT
E-

ENN

0.8 0.7
2

0.82 0.46 0.9
1

Gradien
t
Boostin
g

CORAL RFE SMOT
E-

ENN

0.8 0.7
2

0.82 0.46 0.9
1

Extra
Trees

Baseline RFE SMOT
E-

ENN

0.81 0.7
5

0.78 0.42 0.8
9

Extra
Trees

Baseline None SMOT
E-

ENN

0.81 0.7
5

0.78 0.42 0.8
9

Rando
m
Forest

CORAL None SMOT
E-

ENN

0.8 0.7
4

0.8 0.39 0.8
7

Source: (Research result, 2025)

To examine variation and stability across

datasets, Tables 4 to 7 present the top five
configurations per target project, ranked by
composite score. These allow further analysis of
which classifiers and preprocessing combinations
tend to generalize well in specific contexts.

Table 4. Top Configurations for Camel Dataset
Ranked by Composite Score

Model
Domain
Adaptati

on

Feature
Selectio

n

Resa
mplin

g
F1

Rec
all

AU
C

MC
C

Compos
ite

Score
Logistic

Regressio
n

CORAL
SelectK

Best
SMOT
EENN

0.67
0.5
5

0.6
9

0.2
8

0.73

Logistic
Regressio

n
TCA+

SelectK
Best

SMOT
EENN

0.73
0.6
7

0.6
7

0.1
9

0.72

Logistic
Regressio

n
Baseline

SelectK
Best

SMOT
EENN

0.68
0.5
6

0.6
8

0.2
6

0.72

Logistic
Regressio

n
Baseline RFE

SMOT
EENN

0.68
0.5
6

0.6
4

0.2
6

0.71

Logistic
Regressio

n
Baseline None

SMOT
EENN

0.68
0.5
6

0.6
4

0.2
6

0.71

Source: (Research result, 2025)

Table 4 lists the highest-ranking

configurations for the Camel dataset based on the
composite performance score. Logistic Regression
combined with SelectKBest or RFE appears
frequently among the best configurations. This
suggests that simpler models can still perform
competitively on Camel when coupled with feature
selection and resampling.

Table 5. Top Configurations for Log4j Target
Project Based on Composite Performance Score

Model Domain
Adaptati
on

Featur
e
Selecti
on

Resampl
ing

F1 Recal
l

AU
C

MC
C

Compos
ite

Score

LightGB
M

TCA Non
e

SMOTEE
NN

0.87 0.89 0.8 0.4
6

0.93

Rando
m
Forest

TCA RFE SMOTEE
NN

0.87 0.92 0.7
7

0.4
3

0.9

Rando
m
Forest

TCA Non
e

SMOTEE
NN

0.85 0.92 0.7
9

0.3
2

0.84

LightGB
M

TCA RFE SMOTEE
NN

0.85 0.9 0.7
8

0.3
2

0.84

Gradien
t
Boostin
g

TCA Sele
ctK
Best

None 0.86 0.93 0.7
7

0.3
1

0.83

Source: (Research result, 2025)

Table 5 lists the five best model

configurations for predicting defects in the Log4j
dataset. LightGBM and Random Forest with TCA
and SMOTE-ENN dominate the top results,
highlighting their strong performance on datasets
with severe imbalance like Log4j.

Techno Nusa Mandiri: Journal of Computing and Information Technology
Vol. 22, No. 2 September 2025 | DOI https://doi.org/10.33480/techno.v22i2.6854

130

P-ISSN: 1978-2136 | E-ISSN: 2527-676X
Techno Nusa Mandiri : Journal of Computing and Information Technology
As an Accredited Journal Rank 4 based on Surat Keputusan Dirjen Risbang SK Nomor 85/M/KPT/2020

Table 6. Highest-Scoring Configurations for
Synapse Dataset Using Composite Metric

Model Domain
Adaptatio
n

Feature
Selectio
n

Resampl
ing

F1 Reca
ll

AU
C

MC
C

Compos
ite

Score
Gradien
t
Boostin
g

CORAL Non
e

SMOTEE
NN

0.8 0.7
2

0.8
2

0.4
6

0.91

Gradien
t
Boostin
g

CORAL RFE SMOTEE
NN

0.8 0.7
2

0.8
2

0.4
6

0.91

Extra
Trees

Baseline RFE SMOTEE
NN

0.8
1

0.7
5

0.7
8

0.4
2

0.89

Extra
Trees

Baseline None SMOTEE
NN

0.8
1

0.7
5

0.7
8

0.4
2

0.89

Random
Forest

CORAL None SMOTEE
NN

0.8
0

0.7
4

0.8 0.3
9

0.87

Source: (Research result, 2025)

Table 6 presents the top five configurations

tested on the Synapse project. Gradient Boosting
and Extra Trees consistently appear at the top, with
CORAL and SMOTE-ENN offering improved domain
alignment and class balance. This reinforces the
importance of domain adaptation in more balanced
datasets.

Table 7. Top Model and Preprocessing

Combinations for Xalan Project Ranked by
Composite Score

Model
Domain
Adaptati

on

Feature
Selectio

n

Resampl
ing

F1
Recal

l
AUC

MC
C

Compo
site

Score
LightGB

M
TCA+ None

SMOT
EENN

0.8
6

0.89
0.7
7

0.4
2

0.90

LightGB
M

TCA+ RFE
SMOT
EENN

0.8
6

0.89
0.7
7

0.4
2

0.90

Logistic
Regressi

on

Baseli
ne

SelectKB
est

SMOT
EENN

0.8
2

0.78
0.8
0

0.3
8

0.88

Gradient
Boosting

TCA+ None
SMOT
EENN

0.8
5

0.87
0.7
5

0.3
7

0.87

Gradient
Boosting

TCA+ RFE
SMOT
EENN

0.8
5

0.87
0.7
5

0.3
7

0.87

Source: (Research result, 2025)

Table 7 showcases the configurations

achieving the highest overall scores when applied to
the Xalan dataset. LightGBM and Gradient Boosting
combined with TCA+ and SMOTE-ENN appear
frequently, indicating their robustness in handling
domain shift and class imbalance. The composition
of top-performing pipelines across all datasets
emphasizes the contextual nature of configuration
effectiveness. While ensemble-based classifiers
such as LightGBM and Gradient Boosting often
dominate, traditional models like Logistic
Regression can perform competitively when
supported by appropriate feature selection and

domain adaptation. These results reinforce the
study’s core contribution that metric-based and
computationally lightweight CPDP pipelines can
achieve robust performance across heterogeneous
software projects. Overall, the variation across
datasets emphasizes that CPDP performance is
highly sensitive to dataset characteristics and the
alignment between source and target distributions
validating the necessity of flexible and modular
pipelines.

2. Component Analysis Pipeline

TCA and TCA+ were most effective at
reducing domain shift, especially on dataset pairs
with high distributional differences. Baseline and
CORAL produced fluctuating performance.
SelectKBest showed stable and superior
performance when used with tree-based models
and numerical data. RFE excels on Logistic
Regression but is more sensitive to noise and high
dimensionality. SMOTEENN significantly improves
Recall and G-Mean on imbalanced datasets such as
Camel and Synapse. However, its impact on MCC
and AUC is not always positive, signaling a trade-off
between sensitivity and specificity. LightGBM
excelled in the number of best configurations
overall, indicating generalization ability across
domains. Logistic Regression yields the highest MCC
values on a given project, suggesting that classical
models remain relevant in the CPDP.

The consistently strong performance of
configurations involving TCA and SMOTEENN can
be attributed to their complementary nature: TCA
reduces distributional shift between source and
target domains, facilitating better generalization,
while SMOTEENN improves recall by addressing
class imbalance through oversampling and noise
reduction. Feature selection methods such as
SelectKBest enhanced model focus on the most
predictive attributes, particularly in high-
dimensional spaces like Camel. Ensemble classifiers
like LightGBM and Gradient Boosting benefit from
their ability to capture nonlinear patterns and resist
overfitting, especially when paired with TCA. In
contrast, Logistic Regression performed best when
dimensionality was reduced via feature selection, as
it is more sensitive to irrelevant features and
domain variance.

3. Visualization of Performance Distribution

To complement the tabular results, several
visualizations were employed to highlight patterns
in model behavior, metric relationships, and
resampling outcomes across configurations. These
figures provide deeper insights into model
performance variation across techniques and
datasets.

Techno Nusa Mandiri: Journal of Computing and Information Technology
Vol. 22, No. 2 September 2025 | DOI: https://doi.org/10.33480/techno.v22i2.6854 131

P-ISSN: 1978-2136 | E-ISSN: 2527-676X
Techno Nusa Mandiri : Journal of Computing and Information Technology

As an Accredited Journal Rank 4 based on Surat Keputusan Dirjen Risbang SK Nomor 85/M/KPT/2020

Source: (Research result, 2025)

Figure 2. F1-score distribution for
configurations with SMOTEENN resampling.

Figure 2 presents a boxplot of F1-scores for

all configurations using SMOTEENN. The results
indicate that the majority of models achieve F1-
scores above 0.75, with minimal variance, showing
the consistency and reliability of SMOTE-ENN.
However, a few outliers suggest sensitivity when
paired with suboptimal model or domain
adaptation choices.

Source: (Research result, 2025)

Figure 3. Average F1-Score per Model vs.
Adaptation Domain

Figure 3 visualizes how each classifier

performs under different domain adaptation
settings. LightGBM and Gradient Boosting show
high F1-scores across Baseline, TCA, and CORAL,
confirming their resilience to domain shift.
Meanwhile, Logistic Regression significantly
underperforms with TCA and TCA+, indicating
lower adaptability in those scenarios.

Source: (Research result, 2025)

Figure 4. F1 per Model for each Dataset

The four subplots in Figure 4 display per-model
F1 performance for each target dataset. LightGBM
and Extra Trees maintain strong and consistent
performance across datasets, while Logistic
Regression and Random Forest exhibit greater
variability, particularly in Xalan and Camel. These
findings reinforce the need for context-specific
model tuning in CPDP.

4. Visualization of Domain Distribution

Projection PCA
Understanding domain shift is crucial in

CPDP. Figure 5 employs PCA to visualize feature
distributions of the source and target projects
before and after applying Transfer Component
Analysis (TCA). This allows us to assess the
effectiveness of domain adaptation visually,
complementing the quantitative evaluation.

(a) Xalan Dataset (b) Log4j Dataset

(c) Camel Dataset (d) Synapse Dataset

Source: (Research result, 2025)
Figure 5. PCA visualization of source–target

domains before and after TCA, illustrating that TCA
effectively reduces distributional shift and explains
the observed improvements in CPDP performance.

Techno Nusa Mandiri: Journal of Computing and Information Technology
Vol. 22, No. 2 September 2025 | DOI https://doi.org/10.33480/techno.v22i2.6854

132

P-ISSN: 1978-2136 | E-ISSN: 2527-676X
Techno Nusa Mandiri : Journal of Computing and Information Technology
As an Accredited Journal Rank 4 based on Surat Keputusan Dirjen Risbang SK Nomor 85/M/KPT/2020

Each subfigure 5(a–d) corresponds to a

dataset. In the pre-TCA plots, there is a clear
separation between source and target domains,
implying strong domain divergence: Xalan 5(a): The
source data clusters densely in one region, while the
target spreads more widely. Log4j 5(b): Shows even
more separation, especially along PC1. Camel and
Synapse 5(c, d): Source and target clusters are
nearly disjoint. In contrast, the post-TCA projections
demonstrate that the domains become much more
aligned, indicated by overlapping clusters in PC1-
PC2 space. This visual confirmation explains the
performance improvements of TCA in the previous
tables (e.g., Tables 5 and 7), where it significantly
contributed to higher composite scores. These
projections clearly show that TCA effectively
reduces distributional shift, a key challenge in CPDP.
This supports the empirical results where
configurations with TCA or TCA+ achieved superior
performance.

To complement the insights from domain
alignment, the subsequent figures (Figures 6–8)
explore the interrelation between evaluation
metrics and model performance patterns. These
visualizations help explain why certain models and
configurations consistently achieve superior results
in CPDP settings.

Source: (Research result, 2025)

Figure 6. Correlation between Evaluation Metrics

Figure 6 shows a correlation heatmap

among the evaluation metrics. F1, Recall, and G-
Mean are strongly correlated (0.97–1.00), which
implies that models optimizing one of them tend to
improve others. Interestingly, AUC and MCC have
lower or negative correlation with these metrics,
highlighting their independent behavior and
importance for multi-perspective evaluation.

Source: (Research result, 2025)
Figure 7. Number of Model Appearances in Top-20

Based on F1-Score

This bar chart on Figur 7 shows the

frequency of each model in the top 20
configurations based on F1-score. LightGBM
dominates, reflecting its robustness and
generalization across different target projects.
Logistic Regression, despite being simple, also
appears frequently — confirming its continued
relevance in CPDP when paired with proper
preprocessing.

Source: (Research result, 2025)

Figure 8. Comparison of Average Evaluation
Metrics per Model

The final comparison in Figure 8 plots

average metric values per model. LightGBM leads
overall, while Gradient Boosting shows stronger G-
Measure and Logistic Regression ranks best in MCC.
This indicates that no single model dominates
across all metrics, emphasizing the importance of
multi-metric evaluation in defect prediction.

These results confirm that traditional
pipeline-based CPDP can provide competitive
prediction performance against complex AST-based
or deep learning approaches. The integration of
domain adaptation TCA, SMOTEENN resampling,
SelectKBest feature selection, and models such as
LightGBM can be a practical solution for
organizations with computational limitations. The

Techno Nusa Mandiri: Journal of Computing and Information Technology
Vol. 22, No. 2 September 2025 | DOI: https://doi.org/10.33480/techno.v22i2.6854 133

P-ISSN: 1978-2136 | E-ISSN: 2527-676X
Techno Nusa Mandiri : Journal of Computing and Information Technology

As an Accredited Journal Rank 4 based on Surat Keputusan Dirjen Risbang SK Nomor 85/M/KPT/2020

effectiveness of TCA in aligning feature
distributions across projects is visually and
quantitatively proven, while the dominance of
LightGBM in the best configuration supports the
claim that boosting models have high domain
adaptability.

5. Performance Comparison with TLSTM

To further contextualize the performance
of the proposed pipeline, Table 7 compares our
result on the Camel→Xerces configuration with a
recent deep learning-based approach (TLSTM)
introduced by (Tao et al., 2024).

Table 8. Summary Comparison of Proposed Model

and Deep Learning-based CPDP (with statistical
significance testing)

Model Approach
Type

Feature
Type

Technique F1
(Camel→Xerce

s)
This

Study
Traditiona
l ML + DA
(Logistic

Regression
)

Metric-
based

TCA+ +
SMOTEENN

+
SelectKBest

0.73

TLSTM Deep
Learning
(LSTM)

Semantic
-based
(AST)

TLSTM
(AST +

Transfer
Learning)

0.747

Source: (Research result, 2025; (Tao et al., 2024)

While TLSTM achieves a slightly higher F1-

score of 0.747, our traditional metric-based pipeline
yields a close score of 0.730 using Logistic
Regression combined with TCA+, SMOTEENN, and
SelectKBest. Although formal statistical significance
testing was not conducted, these results indicate
that the proposed approach can achieve
performance that is practically competitive with
TLSTM, while offering lower computational cost
and simpler implementation.

CONCLUSION

This research demonstrates that

traditional metric-based CPDP pipelines combining
domain adaptation, feature selection, resampling,
and classical machine learning models can still
deliver competitive prediction performance,
particularly in new software projects where
historical defect data is unavailable and domain
shift is prominent. Among the 120 combinations
tested, techniques such as TCA and TCA+ proved
effective in aligning feature distributions across
domains, contributing to notable improvements in
F1-Score, Recall, and G-Mean. The SMOTEENN
resampling method also improved the detection of
minority (buggy) instances without destabilizing
other performance metrics. LightGBM and Logistic

Regression emerged as the most consistent and
reliable models, with the best configuration
achieving a composite score of up to 0.812 on the
Log4j project. PCA visualizations further support
the effectiveness of domain alignment, while
correlation analysis confirmed the value of using
multiple evaluation metrics to ensure unbiased
assessment.

The primary contribution of this study lies
in offering a lightweight, reproducible, and easily
deployable CPDP solution that does not depend on
deep learning or resource-intensive processing.
This makes the proposed pipeline highly applicable
in industrial contexts, particularly for small to
medium software teams or organizations operating
under limited infrastructure or tight release cycles.
In practical terms, this pipeline can be integrated
into existing CI/CD workflows, used as a pre-testing
quality gate, or embedded in automated QA systems
to prioritize modules for further testing or code
review. Its low complexity enables easier debugging
and transparency, which are often critical in
industrial settings.

Future work may explore hybrid pipelines
that combine lightweight semantic features with
metric-based learning, validation on large-scale
industrial datasets, and the integration of AutoML
and explainability modules to further enhance
adoption, scalability, and trustworthiness in real-
world software engineering environments..

REFERENCE

Albattah, W., & Alzahrani, M. (2024). Software

Defect Prediction Based on Machine Learning
and Deep Learning Techniques: An Empirical
Approach. AI (Switzerland), 5(4), 1743–1758.
https://doi.org/10.3390/ai5040086

Chicco, D., & Jurman, G. (2020). The advantages of
the Matthews correlation coefficient (MCC)
over F1 score and accuracy in binary
classification evaluation. BMC Genomics,
21(1). https://doi.org/10.1186/s12864-019-
6413-7

Farid, A. B., Fathy, E. M., Eldin, A. S., & Abd-Elmegid,
L. A. (2021). Software defect prediction using
hybrid model (CBIL) of convolutional neural
network (CNN) and bidirectional long short-
term memory (Bi-LSTM). PeerJ Computer
Science, 7, 1–22.
https://doi.org/10.7717/peerj-cs.739

Ghinaya, H., Herteno, R., Faisal, M. R., Farmadi, A., &
Indriani, F. (2024). Analysis of Important
Features in Software Defect Prediction Using
Synthetic Minority Oversampling Techniques
(SMOTE), Recursive Feature Elimination
(RFE) and Random Forest. Journal of
Electronics, Electromedical Engineering, and

Techno Nusa Mandiri: Journal of Computing and Information Technology
Vol. 22, No. 2 September 2025 | DOI https://doi.org/10.33480/techno.v22i2.6854

134

P-ISSN: 1978-2136 | E-ISSN: 2527-676X
Techno Nusa Mandiri : Journal of Computing and Information Technology
As an Accredited Journal Rank 4 based on Surat Keputusan Dirjen Risbang SK Nomor 85/M/KPT/2020

Medical Informatics, 6(3), 276–288.
https://doi.org/10.35882/jeeemi.v6i3.453

Haldar, S., & Fernando Capretz, L. (2024). Feature
Importance in the Context of Traditional and
Just-In-Time Software Defect Prediction
Models. In IEEE Canadian Conference on
Electrical and Computer Engineering (CCECE).

Kumar, P. H., & Bhat, S. (2024). Enhancing Regional
Plagiarism Detection Using a Backtrack
Matching Model: A Precision, Recall, and F1
Score-Based Evaluation. In Journal of
Information Systems Engineering and
Management (Vol. 2025). Retrieved from
https://www.jisem-journal.com/

Kumar, P. S., Nayak, J., & Behera, H. S. (2022). Model-
based Software Defect Prediction from
Software Quality Characterized Code Features
by using Stacking Ensemble Learning. Journal
of Engineering Science and Technology Review,
15(2), 137–155.
https://doi.org/10.25103/jestr.152.17

Ren, J., Peng, C., Zheng, S., Zou, H., & Gao, S. (2022).
An Approach to Improving Homogeneous
Cross-Project Defect Prediction by Jensen-
Shannon Divergence and Relative Density.
Scientific Programming, 2022.
https://doi.org/10.1155/2022/4648468

Sharma, U., & Sadam, R. (2022). An Empirical
Evaluation of Defect Prediction Models Using
Project-Specific Measures. Retrieved from
http://ceur-ws.org

Song, H., Pan, Y., Guo, F., Zhang, X., Ma, L., & Jiang, S.
(2024). ConCPDP: A Cross-Project Defect
Prediction Method Integrating Contrastive
Pretraining and Category Boundary
Adjustment. IET Software, 2024(1).
https://doi.org/10.1049/2024/5102699

Sotto-Mayor, B., & Kalech, M. (2024). A Survey on
Transfer Learning for Cross-Project Defect
Prediction. IEEE Access, 12, 93398–93425.
https://doi.org/10.1109/ACCESS.2024.3424
311

Stradowski, S., & Madeyski, L. (2024). Costs and
Benefits of Machine Learning Software Defect
Prediction: Industrial Case Study. FSE
Companion - Companion Proceedings of the
32nd ACM International Conference on the
Foundations of Software Engineering, 92–103.
Association for Computing Machinery, Inc.
https://doi.org/10.1145/3663529.3663831

Tao, H., Fu, L., Cao, Q., Niu, X., Chen, H., Shang, S., &
Xian, Y. (2024). Cross-Project Defect
Prediction Using Transfer Learning with Long
Short-Term Memory Networks. IET Software,
2024(1).
https://doi.org/10.1049/2024/5550801

Tong, H., Liu, B., Wang, S., & Li, Q. (2019). Transfer-
Learning Oriented Class Imbalance Learning
for Cross-Project Defect Prediction. Retrieved
from http://arxiv.org/abs/1901.08429

Vescan, A., Găceanu, R., & Şerban, C. (2024).
Exploring the impact of data preprocessing
techniques on composite classifier algorithms
in cross-project defect prediction. Automated
Software Engineering, 31(2).
https://doi.org/10.1007/s10515-024-
00454-9

Yang, C., Fan, Z., Wu, J., Zhang, J., Zhang, W., Yang, J.,
& Yang, J. (2021). The Diagnostic Value of
Soluble ST2 in Heart Failure: A Meta-Analysis.
Frontiers in Cardiovascular Medicine, Vol. 8.
Frontiers Media SA.
https://doi.org/10.3389/fcvm.2021.685904

Zimmermann, T., Nagappan, N., Gall, H., Giger, E., &
Murphy, B. (2009). Cross-project defect
prediction. Proceedings of the 7th Joint
Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering,
91–100. New York, NY, USA: ACM.
https://doi.org/10.1145/1595696.1595713

