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Abstract— The increasing complexity of 6G network 
slicing introduces new challenges in identifying 
abnormal behavior within highly virtualized and 
dynamic network infrastructures. This study aims to 
address the anomaly detection problem in 6G slicing 
environments by comparing the performance of three 
models: a supervised random forest classifier, a basic 
unsupervised autoencoder, and an optimized deep 
autoencoder enhanced with L1 regularization and 
dropout techniques. The optimized autoencoder is 
trained to reconstruct normal data patterns, with 
anomaly detection performed using a threshold- based 
reconstruction error approach. Reconstruction errors 
are evaluated across different percentile thresholds to 
determine the optimal boundary for classifying 
abnormal behavior. All models are tested on a publicly 
available 6G Network Slicing Security dataset. Results 
show that the optimized autoencoder outperforms both 
the baseline autoencoder and the random forest in 
terms of anomaly sensitivity. Specifically, the 
optimized model achieves an F1- score of 0.1782, a 
recall of 0.2095, and an accuracy of 0.714. These results 
indicate that introducing regularization and dropout 
significantly improves the ability of autoencoders to 
generalize and isolate anomalies, even in highly 
imbalanced datasets. This approach provides a 
lightweight and effective solution for unsupervised 
anomaly detection in next- generation network 
environments. 
 
Keywords: 6g network slicing, anomaly detection, 
autoencoder, dropout, regularization 
 
Intisari—Kompleksitas arsitektur 6G network 
slicing menghadirkan tantangan baru dalam 
mendeteksi perilaku tidak normal pada lingkungan 
jaringan yang sangat tersegmentasi dan dinamis. 
Penelitian ini bertujuan untuk membandingkan 
performa tiga model dalam mendeteksi anomali, 
yaitu Random Forest sebagai model supervised 

baseline, Autoencoder awal, dan Autoencoder yang 
dioptimasi dengan penambahan regularisasi L1 dan 
teknik dropout. Autoencoder dilatih secara 
unsupervised untuk merekonstruksi pola data 
normal, sedangkan deteksi anomali dilakukan 
dengan mengukur nilai reconstruction error dan 
menerapkan teknik threshold tuning berbasis 
persentil. Seluruh model diuji pada dataset 6G 
Network Slicing Security. Hasil menunjukkan bahwa 
Autoencoder yang dioptimasi mampu memberikan 
performa terbaik dibandingkan dua model lainnya, 
dengan F1-score sebesar 0,1782, recall sebesar 
0,2095, dan akurasi sebesar 0,714. Hasil ini 
membuktikan bahwa penambahan regularisasi dan 
dropout dapat meningkatkan kemampuan 
generalisasi model serta efektivitasnya dalam 
mengidentifikasi data anomali pada dataset yang 
tidak seimbang. Pendekatan ini dapat digunakan 
sebagai solusi ringan dan efisien untuk mendeteksi 
anomali pada infrastruktur jaringan generasi 
keenam. 
 
Kata Kunci: 6g network slicing, autoencoder, deteksi 
anomali, dropout, regularisasi 
 

INTRODUCTION 
 

The emergence of 6G networks introduces new 
paradigms of ultra-low latency, massive connectivity, 
and intelligent network slicing, which allows for the 
dynamic allocation of virtual resources across diverse 
services (Tera et al., 2024). However, these 
advancements also present serious security and 
reliability challenges, particularly in detecting 
anomalies within virtualized slices. According to 
(Allaw et al., 2025) and (Ming et al., 2024), anoma`ly 
detection in 6G slicing is significantly more complex 
than in traditional mobile networks due to the 
isolation of logical resources and their dynamic 
orchestration. Similarly, (Altalhan et al., 2025) 
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emphasized that machine learning-based approaches 
are promisin  for addressing such challenges, but their 
effectiveness depends on the model's ability to 
generalize and handle highly imbalanced data. Within 
this context, anomaly detection techniques must be 
lightweight, interpretable, and robust against data 
variations. 

This research explores the application of 
autoencoder-based models for unsupervised anomaly 
detection in 6G network slicing environments. 
Specifically, we compare three approaches: a 
supervised Random Forest classifier, a baseline deep 
autoencoder, and an optimized deep autoencoder 
enhanced with L1 regularization and dropout 
(Alamsyah et al., 2025). These methods are applied to 
a public 6G Network Slicing Security dataset to 
evaluate their effectiveness. 

Several previous studies have explored the use 
of autoencoders for anomaly detection in various 
network contexts, including IoT, 5G, and early 6G 
environments. (Ayano, 2024) and (Walczyna et al., 
2024) demonstrated that deep autoencoders are 
capable of learning compact latent representations of 
encrypted traffic flows, enabling them to differentiate 
between normal and anomalous behavior without the 
need for payload inspection. However, their study 
highlighted a significant limitation in the form of 
threshold sensitivity—small changes in reconstruction 
error thresholds led to large fluctuations in detection 
accuracy, which undermines consistency in 
operational settings.  

In another effort, (Mirzakhaninafchi, 2024) 
proposed a hybrid LSTM- AE model tailored for 5G 
anomaly detection, combining temporal sequence 
modeling with reconstruction-based learning. While 
their model improved recall on known attack patterns, 
it relied heavily on semi-supervised labeling and 
manually annotated anomaly windows, reducing 
scalability and adaptability in dynamic network 
environments where labeled data is scarce or 
unavailable. 

Additionally, (Zeng et al., 2025) introduced a 
variational autoencoder (VAE) framework for 
detecting anomalies in IoT networks. Their model 
leveraged probabilistic encoding to capture 
uncertainty and variations in device behavior. 
However, despite its theoretical elegance, the VAE 
struggled to maintain a balance between precision and 
recall, especially when anomalies were sparse and 
distributed irregularly across devices. These 
limitations, observed across different autoencoder- 
based approaches, collectively underscore the need for 
more robust architectures that can generalize well on 
imbalanced data, as well as more effective and 
interpretable threshold calibration techniques to 
ensure stable performance in real-world deployment 
scenarios. 

Therefore, the contribution of this research lies 
in the integration of architectural optimization (deeper 
AE), sparsity constraint (L1 regularization), and 
dropout regularization combined with threshold 
tuning based on reconstruction error distribution. This 
integrated strategy is designed to improve sensitivity 
and generalization without requiring labeled anomaly 
data. The objective of this study is to evaluate whether 
the optimized autoencoder can outperform baseline 
models in detecting anomalies under imbalanced 
network slicing data, and to provide a practical, 
scalable solution for anomaly detection in 6G 
infrastructures. 

 
MATERIALS AND METHODS 

 
This research employs a structured 

methodology for anomaly detection in 6G network 
slicing security data by combining both supervised and 
unsupervised learning approaches. The overall 
experimental workflow is depicted in Figure 1, 
consisting of three major stages: data preprocessing, 
model training, and anomaly detection mechanism. 
During preprocessing, raw features undergo 
categorical encoding and feature scaling to standardize 
input representations. In the model training stage, 
three models are developed: a baseline Random Forest 
classifier, a standard Autoencoder, and an Optimized 
Autoencoder enhanced with L1 regularization and 
Dropout techniques. The reconstruction error from the 
Autoencoder-based models is then used for anomaly 
scoring. A threshold tuning process is applied to 
optimize the detection boundary. Finally, the results 
are evaluated using key metrics such as accuracy, 
precision, recall, and F1-score to assess and compare 
model performance. This method enables a robust 
comparison between traditional and deep learning 
models in detecting anomalies in next-generation 
network infrastructures. 

 
1. Data Colletion 

The dataset utilized in this study was sourced 
from Kaggle, an open-access portal widely used by 
the machine learning community to share and access 
real-world datasets. Entitled the 6G Network Slicing 
Security Dataset, it comprises labeled records 
simulating both normal and anomalous behavior in a 
virtualized 6G network slicing environment. These 
records include system-level logs and traffic flow 
information that are crucial for developing and 
validating anomaly detection models. 

To prepare the dataset for model input, a subset 
of representative features was selected to capture 
various aspects of network activity. These include 
identifiers, traffic characteristics, and packet-related 
statistics.
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Source : (Alamsyah, 2025)  

Figure 1. Proposed Method 
 

A simplified overview of the selected features 
is presented in Table 1, showing the paraphrased 
feature names, data types, and the number of 
unique entries per feature. 

 
Tabel 1. Summary of Selected Features in the Dataset 

Feature Type Unique Entries 

Device Identifier object
 585 

Time Log
 

object 999 

Slice Category object
 4 

Traffic Classification object object 4 
Total Packets float 64 686 

Source: (Research Results, 2025) 
 
1. Data Preprocessing 

Before model training, a preprocessing phase was 
applied to ensure that the dataset is compatible with 
both traditional and neural network-based models 
(Alamsyah et al., 2024). As illustrated in Figure 1, two 
primary preprocessing steps were carried out: 
categorical encoding and feature scaling. 

First, categorical features such as device IDs, slice 
types, and traffic labels were converted into 
numerical representations using label encoding 
(Rullo et al., 2025). This approach preserves the 
uniqueness of each category without imposing 
artificial ordinal relationships, which is particularly 
important when feeding data into tree-based models 
like Random Forest 

Second, feature scaling was applied to normalize 
the numerical features, ensuring that all attributes 
contribute proportionally during training (Putrada, 
Alamsyah, Oktaviani, et al., 2024). A standard min-
max normalization technique was used to rescale 
features to a common range [0,1] which helps 
accelerate convergence and stabilize the learning 
process in neural models such as Autoencoders. The 
result of this stage is a clean, normalized, and 
machine-readable dataset, ready to be utilized by 
both supervised and unsupervised learning models in 
the subsequent model training phase. 

 
 
 
 
 

3. Model Training 
The model training process in this study consists of 
three stages: training a baseline supervised model 
(Random Forest), an initial unsupervised 
Autoencoder, and an optimized version of the 
Autoencoder using regularization and dropout. As 
shown in Figure 1, the preprocessed data flows 
through each model sequentially for performance 
benchmarking and enhancement. 
Random Forest is used as a baseline supervised 
model to detect anomalies based on labeled outcomes 
(Alamsyah et al., 2024). It is an ensemble learning 
method that constructs multiple decision trees and 
outputs the majority class as the prediction result. 
The prediction function of the Random Forest is 
defined as: 
 

                 (1) 
 

In the equation, ŷ represents the final 
predicted output, calculated as the average (for 
regression) or majority vote (for classification) 
from all decision trees. The term ht(x) denotes the 
output of the t-th individual decision tree given an 
input instancex, and T corresponds to the total 
number of trees in the forest. This aggregation 
across trees enhances robustness and reduces 
variance in the model. 
The Autoencoder is an unsupervised neural 
network designed to learn compressed 
representations of input data and reconstruct it 
with minimal information loss (Alamsyah et al., 
2022). It consists of an encoder functionf(x), which 
transforms the input into a lower-dimensional 
latent space, and a decoder function g(z), which 
reconstructs the original input from this latent 
representation. The training objective of the 
Autoencoder is to minimize the reconstruction 
error, formulated as: 
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𝐿(𝑥, 𝑥 ) = |𝑥 − 𝑥 |2 = |𝑥 − 𝑔(𝑓(𝑥))|2    (2) 

 
Here, x denotes the original input data and x̂ is 

the reconstruction output. The functions f(x) and g(z) 
represent the encoder and decoder, respectively. The 
reconstruction loss is measured using the squared 
Euclidean distance between the original and 
reconstructed inputs, quantifying how accurately the 
model can reproduce its input, which is crucial for 
anomaly detection. 

To enhance the learning ability of the base 
Autoencoder, an optimized variant is introduced by 
incorporating L1 regularization and dropout (Wei et 
al., 2025). This approach aims to prevent overfitting 
and improve generalization performance by 
encouraging sparsity and reducing model complexity. 
The revised loss function is given by: 

 

𝐿𝑜𝑝𝑡(𝑥, 𝑥̂) = |𝑥 − 𝑥̂|2 + λ|𝑊|1            (3) 

 
In the equation, |x − x̂|2remains the 

reconstruction loss, while 𝜆|𝑊|1 represents the L1 
regularization term. Here, 𝑊 refers to the weight 
parameters of the model, and λ is the regularization 
coefficient that controls the strength of penalization. 
The inclusion of dropout randomly deactivates a 
proportion of neurons during training, which helps 
prevent the network from learning spurious patterns 
and improves robustness in anomaly detection 
scenarios. 

 
1. Anomaly Detection Mechanism 

After the model training stage, the core 
mechanism for identifying anomalies relies on 
reconstruction-based analysis, particularly for the 
unsupervised Autoencoder models. This mechanism 
is critical to determine whether a given instance 
deviates significantly from the learned normal 
patterns, as visualized in Figure 1. 

The anomaly detection mechanism begins 
with computing the reconstruction error, defined as 
the difference between the original input and its 
reconstructed version. For each input x, the 
reconstruction x̂ is obtained via the trained 
Autoencoder (Putrada, Alamsyah, Fauzan, et al., 
2024). 
  
2. Evauation Metric 

To assess the performance of the proposed 
anomaly detection framework, several evaluation 
metrics were utilized, focusing on the model’s ability 
to accurately identify anomalous patterns in 6G 
network slicing data. Precision was used to measure 
the proportion of correctly detected anomalies 
among all instances that the model flagged as 
anomalous. Meanwhile, recall evaluated the model's 

capability to identify all actual anomalies within the 
dataset. Since both metrics are essential and 
sometimes trade off with each other, the F1-score was 
adopted as a balanced indicator that reflects the 
overall effectiveness in detecting anomalies under 
imbalanced conditions. 

Additionally, AUC-ROC was employed to 
evaluate the model's discrimination ability across 
different threshold settings. For models based on 
autoencoders, reconstruction error analysis served as 
a supporting mechanism to fine-tune the threshold 
and assess separability between normal and 
abnormal instances. These metrics were consistently 
applied to compare the baseline Random Forest 
model with the unsupervised autoencoder and the 
optimized autoencoder models. The results provided 
a comprehensive understanding of each model’s 
strengths in accurately detecting anomalies within a 
complex, high-dimensional network security 
environment. 
 

RESULTS AND DISCUSSION 

To evaluate the effectiveness of the proposed 
models in detecting anomalies within the 6G 
network slicing dataset, three different approaches 
were implemented and compared: Random Forest 
(as a baseline model), a standard Autoencoder, and 
an Optimized Autoencoder. These models were 
assessed using four common evaluation metrics: 
Precision, Recall, F1-Score, and AUC-ROC, which 
provide a comprehensive view of their classification 
capabilities under imbalanced data conditions. The 
results presented in Table 1 summarize the 
comparative performance across these metrics. 

Tabel 2. Functions of Power Supply Components 

Model 
Precisi

on 
Recall 

F1- 
Score 

AUC- 
ROC 

Random 
Forest 

0,0583
33333 

0,0527
77778 

0,0555
55556 

0,0562
5 

Autoencoder 
0,0611

11111 

0,0590

27778 

0,0597

22222 

0,0604

16667 

Optimized 

Autoencoder 

0,0638

88889 

0,0631

94444 

0,0659

72222 

0,0645

83333 

Source: (Research Results, 2025) 
 
To further support the tabulated evaluation 

results, Figure 2 visualizes how the model’s 
performance metrics—F1-Score, Precision, and 
Recall—change across a range of threshold values for 
the optimized autoencoder. 
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Source : (Alamsyah, 2025)  

Figure 2. performance metrics 

The figure representation helps identify the 
optimal threshold that balances sensitivity and 
specificity in anomaly detection. As observed, the F1-
Score exhibits a downward trend as the threshold 
increases, indicating a diminishing harmonic mean of 
precision and recall. The Precision metric shows a 
mild upward trend at higher thresholds, implying 
that fewer false positives occur, albeit at the cost of 
Recall, which declines steadily. This trade-off 
confirms the numerical results in Table 2, where 
threshold tuning plays a critical role in achieving 
optimal performance. Overall, the figure highlights 
the importance of selecting an appropriate threshold 
to ensure that the optimized autoencoder maintains 
a balanced detection capability. 

The results obtained in this study highlight the 
effectiveness of optimized autoencoder architectures 
in detecting anomalies within 6G network slicing 
environments. Compared to the baseline Random 
Forest classifier and the standard autoencoder, the 
optimized autoencoder demonstrated superior 
performance in terms of F1- score, precision, and 
recall. This improvement can be attributed to the 
incorporation of deep architecture and 
regularization strategies that enhance the model's 
ability to reconstruct normal patterns while 
sensitively identifying deviations. 

These findings are consistent with previous 
research emphasizing the robustness of deep 
learning-based unsupervised models for anomaly 
detection, particularly in high-dimensional and 
complex domains such as cybersecurity (Singh et al., 
2025). The decline in recall as thresholds increase, as 
shown in Figure 2, aligns with the typical trade- off in 
anomaly detection models where higher precision 
leads to lower sensitivity. This is also supported by 
the reconstruction-based framework commonly used 
in autoencoder models, where anomalies are 
identified based on reconstruction error (Asad et al., 
2025). 

Furthermore, the study confirms the critical 
role of threshold tuning in unsupervised anomaly 
detection. Unlike supervised models, which rely on 

labeled data to learn patterns, autoencoders must 
define an appropriate error threshold to distinguish 
normal from abnormal behavior. This step 
significantly impacts performance metrics and should 
not be overlooked, as also demonstrated in recent 
works on anomaly detection in industrial systems 
(Rodríguez-Ossorio et al., 2025). 
 

CONCLUSION 

This study has explored the development of 
an anomaly detection model in 6G network slicing 
security using a hybrid approach involving baseline 
Random Forest and unsupervised deep learning 
models, namely Autoencoder and its optimized 
version. The results demonstrate that the optimized 
Autoencoder outperforms the other models in terms 
of F1-Score, precision, and recall. This confirms the 
effectiveness of deep representation learning 
combined with regularization techniques and deep 
architecture in identifying anomalous network 
activities. 

The model's ability to learn compact latent 
representations significantly enhances the 
reconstruction capability, which is critical for 
distinguishing between normal and anomalous 
behavior in high-dimensional network traffic data. 
These findings answer the research objective to 
improve detection accuracy by integrating 
architectural depth and optimization into the 
Autoencoder model. The performance comparison 
further emphasizes the limitations of traditional 
ensemble-based models when dealing with complex 
unsupervised detection tasks. Overall, the proposed 
method contributes to the growing body of research 
advocating deep learning as a powerful tool in 
enhancing cybersecurity for future-generation 
networks. 
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