https://ejournal.nusamandiri.ac.id/index.php/techno/issue/feed Techno Nusa Mandiri: Journal of Computing and Information Technology 2022-09-29T23:02:42-04:00 Nurajijah jurnal.techno@nusamandiri.ac.id Open Journal Systems <p>The TECHNO Nusa Mandiri: Journal of Computing and Information Technology is a journal published by LPPM Universitas Nusa Mandiri. The TECHNO Nusa Mandiri:&nbsp;Journal of Computing and Information Technology was originally intended to accommodate scientific papers made by Informatics Engineering lecturers. TECHNO Nusa Mandiri Journal has ISSN: <a title="Print Media" href="http://issn.pdii.lipi.go.id/issn.cgi?daftar&amp;1180425415&amp;1&amp;&amp;" target="_blank" rel="noopener"><strong>1978-2136</strong></a> (Print Media) and <a title="Online Media" href="http://issn.pdii.lipi.go.id/issn.cgi?daftar&amp;1452590549&amp;1&amp;&amp;" target="_blank" rel="noopener"><strong>2527-676X</strong></a> (Online Media). The TECHNO Nusa Mandiri:&nbsp;Journal of Computing and Information Technology have the accredited National Journal status is accredited by the Indonesian Ministry of Research and Higher Education at the Sinta S4 level, in accordance with Decree on Strengthening SK Research and Development Number 21 / E / KPT / 2018 which has been in effect since July 9, 2018, for 5 years. Source: <a title="Salinan Surat Keputusan Peringkat Akreditasi Elektronik Periode I 2018" href="http://risbang.ristekdikti.go.id/wp-content/uploads/2018/07/Salinan-Surat-Keputusan-Peringkat-Akreditasi-Elektronik-Periode-I-2018.pdf" target="_blank" rel="noopener">Risbang Ristekdikti.go.id</a>. This journal is&nbsp;Rank 4 Accreditation Certificate (S4), Accreditation is valid for 5 years. Starting from Vol. 13, No. 1 the Year 2016 to Vol. 17, No. 1 the Year 2020.&nbsp;<span class="tlid-translation translation"><span title="">Journal of TECHNO Nusa Mandiri, re-accreditation remains at Rank 4 (SINTA 4), starting Vol. 16 No. 2 of 2019 based on the Decree of the Minister of Research and Technology / National Research and Innovation Agency Number 85/M/ KPT/2020, April 1, 2020</span></span></p> https://ejournal.nusamandiri.ac.id/index.php/techno/article/view/3337 KLASIFIKASI STATUS STUNTING PADA BALITA MENGGUNAKAN METODE NAIVE BAYES DI KOTA MADIUN BERBASIS WEB 2022-09-29T22:13:07-04:00 Abdul Rozaq rozaq@unipma.ac.id Ari Joko Purnomo arijoko527@gmail.com <p>Stunting pada balita merupakan masalah gizi kronis yang sedang dialami dunia kesehatan. Anak dengan kondisi stunting mengalami kecenderungan penurunan tingkat kecerdasan, gangguan berbicara dan kesulitan dalam menangkap pembelajaran dalam metode yang biasa. Kota Madiun masih menghadapi tantangan dalam permasalahan gizi stunting. Prevalensi angka stunting tahun 2020 sebesar 10,18 persen atau 814 anak dari total 7.996 yang diukur. Penggunaan data mining dapat digunakan dalam berbagai bidang yang berhubungan dengan sekumpulan data yang banyak. Terdapat beberapa teknik pengerjaan data mining dalam pengambilan suatu informasi, diantaranya adalah klasifikasi. Umumnya klasifikasi status stunting menggunakan&nbsp;indeks TB/U atau tinggi badan dibanding usia. Pada penelitian ini, metode yang digunakan adalah metode naive bayes, yakni metode yang digunakan untuk memprediksi berbasis probabilitas, sistem yang dibangun menggunakan bahasa pemrograman python dan flask sebagai framework-nya. Dari hasil pengujian yang dilakukan menunjukkan bahwa metode naive bayes dapat digunakan dalam melakukan klasifikasi terhadap status stunting pada balita. Algoritma Naïve Bayes yang diimplementasikan ini, memiliki performansi nilai rata-rata yaitu akurasi sebesar 58%, precision sebesar 68%, dan recall sebesar 58% dari hasil pengujian confusion matrix dengan 30% data testing dan 70% data training.</p> 2022-09-29T22:05:30-04:00 ##submission.copyrightStatement## https://ejournal.nusamandiri.ac.id/index.php/techno/article/view/3441 Sentiment Analysis for Pharmaceutical Company from Social Media using Adaptive Compression (AdaComp) with Random Under Sample (RUS) and Synthetic Minority Over-sampling (SMOTE) 2022-09-29T23:02:42-04:00 Pamungkas Setyo Wibowo pumpz.setyo@gmail.com Andry Chowanda achowanda@binus.edu <p>Pharmaceutical company has become the most highlight company across the world lately because of the pandemic. Despite of the high demand market in pharmaceutical company, about 94% of large company across the world having difficulty in their supply chain that indirectly affect their services. The purpose of this research is to compare word embedding with compression model by doing sentiment analysis about the entity to find the best model that give better accuracy rates&nbsp;based on the opinion of Twitter, Instagram and Youtube, as they are the largest &nbsp;platform that its many users to express their opinions about an individual or an instance. Data is retrieved from Twitter, Instagram and Youtube using the R-Studio application by utilizing their API library, then preprocessing and stored in a database. Next step is labeling&nbsp;the data and then train the data using word2Vec and LSTM, GloVe and LSTM and lastly using Adaptive Compression (adaComp) to compress the both model word embedding.&nbsp;Unfortunately, we got imbalanced dataset after labeling process, so we add sampling technique to sampling the dataset using Random Under Sample (RUS) and Synthetic Minority Over-sampling Technique (SMOTE).&nbsp;After the data are trained and tested, the results will be evaluated using Confusion Matrix to get the best Accuracy. With several models that have been carried out,applying adaComp is proven to increase accuracy. In the Word2Vec word embedding with LSTM model, applying adaComp increasing its accuracy from 77% to 81%.</p> 2022-09-29T23:02:42-04:00 ##submission.copyrightStatement##