SENTIMENT ANALYSIS OF PUBLIC OPINION ON TRANSPORTATION SERVICES IN INDONESIA USING MACHINE LEARNING

Penulis

  • Fina Sifaul Nufus Universitas Nusa Mandiri
  • Windu Gata Universitas Nusa Mandiri

DOI:

https://doi.org/10.33480/techno.v20i2.6577

Kata Kunci:

Naïve Bayes, Sentiment Analysis , Support Vector Machine , Transportation , Twitter

Abstrak

This study analyzes public sentiment towards transportation services in Indonesia through social media using Naïve Bayes and Support Vector Machine (SVM) algorithms. Data was collected from Twitter using an API with transportation-related keywords over a three-month period. The analysis results indicate that 93.5% of the opinions are neutral, 3.5% are positive, and 3% are negative. The dominance of neutral sentiment suggests potential dataset imbalance or user hesitation in expressing strong opinions. SVM achieved a higher accuracy (100%) compared to Naïve Bayes (92%), which may be influenced by dataset limitations or the model's validation method. Data preprocessing involved several steps, including tokenization, stopword removal, stemming, lemmatization, and handling of missing data to ensure cleaner and more structured text input. These findings highlight the potential of sentiment analysis for transportation policy improvements, providing insights for policymakers and transport service providers. Future research should address data balancing and broader dataset usage to enhance the robustness of findings and support better decision-making in the transportation sector.

Referensi

A. Pratama & T. W. Hadi. (2022). Utilizing Social Media as a Data Source for Analyzing Public Perception of Public Transportation. Journal of Information Systems, 10, n.

D. Kusuma et al. (2021). Implementation of Machine Learning in Public Sentiment Analysis of App-Based Transportation Services. Journal of Information Technology, 18, n.

Dwianto, E., & Sadikin, M. (2021). Sentiment Analysis of Online Transportation on Twitter Using Naïve Bayes and Support Vector Machine Classification Methods. Format: Scientific Journal of Informatics Engineering, 10(1), 94. https://doi.org/10.22441/format.2021.v10.i1.009

Fadlisyah, F., & Muhathir, M. (2023). Performance Evaluation Of Variations Boosting Algorithms For Classifying Formalin Fish From Photos. Journal of Informatics and Telecommunication Engineering, 6(2), 621–629. https://doi.org/10.31289/jite.v6i2.6614

Geni, L., Yulianti, E., & Sensuse, D. I. (2023). Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using IndoBERT Language Models. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), 9(3), 746–757. https://doi.org/10.26555/jiteki.v9i3.26490

Hidayati, I. (2023). Breaking the commute barrier: How women in Jabodetabek overcome daily challenges on commuting for work. ETNOSIA : Jurnal Etnografi Indonesia, 8(1), 44–62. https://doi.org/10.31947/etnosia.v8i1.26085

Iwandini, I., Triayudi, A., & Soepriyono, G. (2023). Sentiment Analysis of Jakarta Transportation Users Towards TransJakarta Using Naïve Bayes and K-Nearest Neighbor Methods. Journal of Information System Research (JOSH), 4(2), 543–550. https://doi.org/10.47065/josh.v4i2.2937

Khairunnisa, S., Adiwijaya, A., & Faraby, S. Al. (2021). Effect of Text Preprocessing on Sentiment Analysis of Public Comments on Twitter (Case Study: COVID-19 Pandemic). Journal of Media Informatics Budidarma, 5(2), 406. https://doi.org/10.30865/mib.v5i2.2835

Khoiruddin, Y., Fauzi, A., & Siregar, A. M. (2023). Sentiment Analysis of Gojek Indonesia on Twitter Using Naïve Bayes and Support Vector Machine Algorithms. Scientific Journal of Computer Science, 19, 391–400.

M. Yusuf & L. Kurniawan. (2023). Comparison of Support Vector Machine and Deep Learning Algorithms in Online Transportation Sentiment Analysis. Journal of Artificial Intelligence, 5, no.

N. Dewi & P. Santoso. (2022). Analysis of Public Opinion Trends on Public Transportation Through Social Media. Journal of Computer Science, 12, n.

Nalle, V. I. W., Syaputri, M. D., Krisnanto, W., & Tjandra, O. C. P. (2023). Public Participation in Bus Transit Policymaking: The Case of Semarang, Indonesia. International Journal of Transport Development and Integration, 7(3), 235–245. https://doi.org/10.18280/ijtdi.070307

Novaneliza, R., Handayani, F., Suhandar, R. J., Surono, H., Azzahra, N. S., & Nadilla, D. (2023). Comparison of Algorithms for Sentiment Analysis on Twitter for Public Transportation Commuter Line. Journal of Computer Science & Informatics (J-SAKTI, 7(1), 13–21.

Pratama, D., Rifai, A. I., & Handayani, S. (2023). The Passenger Satisfaction Analysis of Commuter Line in the New-Normal Period. Indonesian Journal of Multidisciplinary Science, 1(1), 409–418. https://doi.org/10.55324/ijoms.v1i1.398

R. Sari & B. Nugroho. (2021). Sentiment Analysis of Online Transportation Users on Twitter Using Naïve Bayes Method. Journal of Informatics, 14, n.

Said, L. B., & Syafey, I. (2022). User acceptance oF public transport systems based on a perception model. International Journal of Transport Development and Integration, 6(4), 399–414. https://doi.org/10.2495/TDI-V6-N4-399-414

Savita, D. A., Putra, I. K. G. D., & Rusjayanthi, N. K. D. (2021). Public Sentiment Analysis of Online Transportation in Indonesia through Social Media Using Google Machine Learning. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 9(2), 153. https://doi.org/10.24843/jim.2021.v09.i02.p06

Setiawan, Y., Jondri, J., & Astuti, W. (2022). Twitter Sentiment Analysis on Online Transportation in Indonesia Using Ensemble Stacking. Jurnal Media Informatika Budidarma, 6(3), 1452. https://doi.org/10.30865/mib.v6i3.4359

Singgalen, Y. A. (2021). Selection of Methods and Algorithms in Sentiment Analysis on Social Media: Systematic Literature Review. Journal of Information Systems and Informatics, 3(2), 278–302. https://doi.org/10.33557/journalisi.v3i2.125

T. Ramadhani & R. Widodo. (2021). Twitter-Based Sentiment Analysis for Public Transportation Service Evaluation. Journal of Data Science, 6, no.

Wijiyanto, W., Pradana, A. I., Sopingi, S., & Atina, V. (2024). K-Fold Cross Validation Technique for Evaluating Student Performance. Journal of Algorithms, 21(1), 239–248. https://doi.org/10.33364/algoritma/v.21-1.1618

##submission.downloads##

Diterbitkan

2025-09-25

Cara Mengutip

Nufus, F. S., & Gata, W. (2025). SENTIMENT ANALYSIS OF PUBLIC OPINION ON TRANSPORTATION SERVICES IN INDONESIA USING MACHINE LEARNING. Jurnal Techno Nusa Mandiri, 20(2), 143–150. https://doi.org/10.33480/techno.v20i2.6577