OPTIMIZED DEEP AUTOENCODER WITH L1 REGULARIZATION AND DROPOUT FOR ANOMALY DETECTION IN 6G NETWORK SLICING

Penulis

  • Valencia Claudia Jennifer Kaunang Universitas Informatika Dan Bisnis Indonesia
  • Nur Alamsyah Universitas Informatika Dan Bisnis Indonesia
  • Titan Parama Yoga Universitas Informatika dan Bisnis Indonesia
  • Acep Hendra Universitas Informatika dan Bisnis Indonesia
  • Budiman Budiman Universitas Informatika dan Bisnis Indonesia

DOI:

https://doi.org/10.33480/techno.v20i2.6912

Kata Kunci:

6g network slicing , anomaly detection , autoencoder , dropout , regularization

Abstrak

The increasing complexity of 6G network slicing introduces new challenges in identifying abnormal behavior within highly virtualized and dynamic network infrastructures. This study aims to address the anomaly detection problem in 6G slicing environments by comparing the performance of three models: a supervised random forest classifier, a basic unsupervised autoencoder, and an optimized deep autoencoder enhanced with L1 regularization and dropout techniques. The optimized autoencoder is trained to reconstruct normal data patterns, with anomaly detection performed using a threshold- based reconstruction error approach. Reconstruction errors are evaluated across different percentile thresholds to determine the optimal boundary for classifying abnormal behavior. All models are tested on a publicly available 6G Network Slicing Security dataset. Results show that the optimized autoencoder outperforms both the baseline autoencoder and the random forest in terms of anomaly sensitivity. Specifically, the optimized model achieves an F1- score of 0.1782, a recall of 0.2095, and an accuracy of 0.714. These results indicate that introducing regularization and dropout significantly improves the ability of autoencoders to generalize and isolate anomalies, even in highly imbalanced datasets. This approach provides a lightweight and effective solution for unsupervised anomaly detection in next- generation network environments.

Referensi

Alamsyah, N., Budiman, B., Setiana, E., Jennifer, V. C., & others. (2025). THE ROLE OF L1 REGULARIZATION IN ENHANCING LOGISTIC REGRESSION FOR EGG PRODUCTION PREDICTION. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 10(4), 821–832.

Alamsyah, N., Fauzan, M. N., Putrada, A. G., & Pane, S. F. (2022). Autoencoder image denoising to increase optical character recognition performance in text conversion. 2022 International Conference on Advanced Creative Networks and Intelligent Systems (ICACNIS), 1–6.

Alamsyah, N., Kurniati, A. P., & others. (2024a). Airfare Fluctuation Analysis with Event and Sentiment Features by Stacking Ensemble Model. 2024 Ninth International Conference on Informatics and Computing (ICIC), 1–6.

Alamsyah, N., Kurniati, A. P., & others. (2024b). Event Detection Optimization Through Stacking Ensemble and BERT Fine-tuning For Dynamic Pricing of Airline Tickets. IEEE Access.

Allaw, Z., Zein, O., & Ahmad, A.-M. (2025). Cross- Layer Security for 5G/6G Network Slices: An SDN, NFV, and AI-Based Hybrid Framework. Sensors, 25(11), 3335.

Altalhan, M., Algarni, A., & Alouane, M. T.-H. (2025). Imbalanced Data problem in Machine Learning: A review. IEEE Access.

Asad, M., Ullah, I., Hafeez, M. A., Sistu, G., & Madden,

M. G. (2025). A Probabilistic Adversarial Autoencoder for Novelty Detection: Leveraging Lightweight Design and Reconstruction Loss. IEEE Access.

Ayano, K. (2024). Deep Learning-Based Anomaly Detection in TLS Encrypted Traffic. Proceedings of the Future Technologies Conference, 249–270.

Ming, Z., Yu, H., & Taleb, T. (2024). User Request Provisioning Oriented Slice Anomaly Prediction and Resource Allocation in 6G Networks. ICC 2024-IEEE International Conference on Communications, 3640– 3645.

Mirzakhaninafchi, H. (2024). Comparative Analysis of Deep Learning-Based Anomaly Detection Models for Gps Spoofing Detection [Master’s Thesis]. South Dakota State University.

Putrada, A. G., Alamsyah, N., Fauzan, M. N., & Oktaviani, I. D. (2024). Pearson Correlation for Efficient Network Anomaly Detection with Quantization on the UNSW-NB15 Dataset. 2024 International Conference on ICT for Smart Society (ICISS), 1–6.

Putrada, A. G., Alamsyah, N., Oktaviani, I. D., & Fauzan, M. N. (2024). LSTM For Web Visit Forecasting with Genetic Algorithm and Predictive Bandwidth Allocation. 2024 International Conference on Information Technology Research and Innovation (ICITRI), 53–58.

Rodríguez-Ossorio, J. R., Morán, A., Fuertes, J. J., Prada, M. A., Díaz, I., & Domínguez, M. (2025). Adaptive model based on ESN for anomaly detection in industrial systems. Evolving Systems, 16(1), 25.

Rullo, A., Alam, F., & Serra, E. (2025). Trace Encoding Techniques for Multi-Perspective Process Mining: A Comparative Study. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 15(1), e1573.

Singh, P., Pranav, P., & Dutta, S. (2025). Bi-GAN-LDA for cybersecurity: A hybrid deep learning framework for advanced network anomaly detection. Engineering Research Express, 7(2), 025238.

Tera, S. P., Chinthaginjala, R., Pau, G., & Kim, T. H. (2024). Towards 6G: An Overview of the Next Generation of Intelligent Network Connectivity. IEEE Access.

Walczyna, T., Jankowski, D., & Piotrowski, Z. (2024). Enhancing Anomaly Detection Through Latent Space Manipulation in Autoencoders: A Comparative Analysis. Applied Sciences, 15(1), 286.

Wei, K., Zhao, R., Kou, H., Chen, P., Cao, Y., Zheng, Y., & Deng, L. (2025). Dimensionality reduction of rolling bearing fault data based on graph-embedded semi- supervised deep auto-encoders. Engineering Applications of Artificial Intelligence, 152, 110689.

Zeng, G.-Q., Yang, Y.-W., Lu, K.-D., Geng, G.-G., & Weng, J. (2025). Evolutionary Adversarial Autoencoder for Unsupervised Anomaly Detection of Industrial Internet of Things. IEEE Transactions on Reliability

##submission.downloads##

Diterbitkan

2025-10-02

Cara Mengutip

Jennifer Kaunang, V. C. ., Alamsyah, N., Parama Yoga, T. ., Hendra, A., & Budiman, B. (2025). OPTIMIZED DEEP AUTOENCODER WITH L1 REGULARIZATION AND DROPOUT FOR ANOMALY DETECTION IN 6G NETWORK SLICING. Jurnal Techno Nusa Mandiri, 20(2), 189–194. https://doi.org/10.33480/techno.v20i2.6912