MODEL KLASIFIKASI PENERIMA PROGRAM KARTU INDONESIA PINTAR MENGGUNAKAN METODE XGBOOST

Authors

DOI:

https://doi.org/10.33480/inti.v20i2.7770

Keywords:

classification, education, smart Indonesian card, XGBoost method

Abstract

Poverty is one of the major factors contributing to the low quality of education in Indonesia. The Smart Indonesia Program (Program Indonesia Pintar) is a cash assistance program distributed through the Smart Indonesia Card (Kartu Indonesia Pintar/KIP) to support students from economically disadvantaged families, ranging from elementary to higher education levels. This study aims to classify students who are eligible to receive the Smart Indonesia Card using the XGBoost method, with a case study conducted at SMPN 02 Kebun Tebu. The dataset used in this study consists of independent and dependent variables. The independent variables include father’s age, mother’s age, father’s education level, mother’s education level, father’s income, mother’s income, number of family dependents, and students’ academic average scores. The dependent variable is the eligibility status of KIP recipients as the target class. Two classification models were developed using data split ratios of 70:30 and 80:20. The model with a 70:30 data split achieved an accuracy of 0.9048, a precision of 0.9034, a recall of 0.9072, and an F1-score of 0.9053. Meanwhile, the model with an 80:20 data split demonstrated better performance, with an accuracy of 0.9167, a precision of 0.9149, a recall of 0.9189, and an F1-score of 0.9169. The optimal model obtained from this study can be utilized by schools to support policy decision-making in determining eligible Smart Indonesia Card recipients, ensuring that educational assistance is distributed accurately, adequately, and equitably

Downloads

Download data is not yet available.

References

Ali, Z. A., Abduljabbar, Z. H., Tahir, H. A., Sallow, A. B., & Almufti, S. M. (2023). eXtreme gradient boosting algorithm with machine learning: A review. Academic Journal of Nawroz University, 12(2), 320–334.

Asselman, A., Khaldi, M., & Aammou, S. (2023). Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interactive Learning Environments, 31(6), 3360–3379.

Bachhal, P., Ahuja, S., & Gargrish, S. (2021). Educational data mining: A review. Journal of Physics: Conference Series, 1950(1), 012022.

Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937–1967.

CNBC Indonesia. (2021, June 22). Program Indonesia Pintar Rp2,8 T Tak Tepat Sasaran. CNBC Indonesia.

Direktorat Statistik Kesejahteraan Rakyat. (2023). Kesejahteraan Anak Indonesia: Analisis Kemiskinan Anak Moneter 2022 (4103025th ed.). Badan Pusat Statistik.

Hidayat, R., Huda, M., & Pradita, N. (2024). Comparison Of The C4. 5 And Naïve Bayes Algorithm For Recommendations For Aid Recipients For The Smart Indonesian Program. Kesatria: Jurnal Penerapan Sistem Informasi (Komputer Dan Manajemen), 5(1), 345–358.

Karo, I. M. K., Khosuri, A., & Setiawan, R. (2021). Effects of Distance Measurement Methods in K-Nearest Neighbor Algorithm to Select Indonesia Smart Card Recipient. 2021 International Conference on Data Science and Its Applications (ICoDSA), 209–214.

Li, J., Gao, X., & Dong, R. (2025). XGBoost-SHAP-IPA: An explainable algorithm for influencing factors on resident willingness to pay for recycled water. Alexandria Engineering Journal, 131, 383–397.

Nurkholis, A., Alim, S., Samsugi, S., & Asyad, C. (2024). Predictive Analysis of Toddler Nutrition Using C5. 0 Decision Tree Method. 2024 International Conference on Information Technology Research and Innovation (ICITRI), 88–92.

Nurkholis, A., Purwayoga, V., Lukmana, H. H., Prihandono, A., & Koswara, W. (2022). Analysis of Weather Data for Rainfall Prediction using C5. 0 Decision Tree Algorithm. 2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE), 551–555.

Pusat Layanan Pembiayaan Pendidikan. (2024, January 23). Pemerintah Tingkatkan Bantuan PIP Bagi Siswa SMA dan SMK. Kementerian Pendidikan Dasar Dan Menengah Republik Indonesia.

Rahhali, M., Oughdir, L., Lahmadi, Y., & El Khattab, M. Z. (2024). The Impact of Data Preprocessing on the Quality and Effectiveness of E-Learning. International Journal of Intelligent Systems and Applications in Engineering, 12, 59–65.

Ridwan, A., & Afriadi, B. (2023). Review Study Evaluation Of Smart Indonesia Card Implementation Through Smart Indonesia Program. International Education Trend Issues, 1(2), 98–105.

Sakhiyya, Z., & Rahmawati, Y. (2024). Overview of education in Indonesia. In International Handbook on Education in Southeast Asia (pp. 277–301). Springer.

Salsabilah, W. S., Wahyudin, A., & Hidayati, S. (2024). Rethinking the Indonesia Smart Program (PIP): A Policy Review and Solutions for Better Student Outcomes. Nidhomul Haq: Jurnal Manajemen Pendidikan Islam, 9(3), 769–780.

Saraswat, P., & Raj, S. (2022). Data pre-processing techniques in data mining: A Review. International Journal of Innovative Research in Computer Science &amp, 122–125.

Sepbriant, G. D., & Utomo, D. W. (2024). Ensemble Learning pada Kategorisasi Produk E-Commerce menggunakan Teknik Boosting. JISKA (Jurnal Informatika Sunan Kalijaga), 9(2), 123–133.

Ssenyonga, M. (2021). Imperatives for post COVID-19 recovery of Indonesia’s education, labor, and SME sectors. Cogent Economics & Finance, 9(1), 1911439.

Tempola, F., Rosihan, R., & Adawiyah, R. (2021). Holdout validation for comparison classfication naïve bayes and KNN of recipient kartu Indonesia pintar. IOP Conference Series: Materials Science and Engineering, 1125(1), 012041.

UNICEF Indonesia. (2023). Education and Adolescents in Indonesia 2023. UNICEF Indonesia.

Yuniarto, B., & Yudha, R. P. (2021). Citizenship Education in The Character Building of The Nation. International Journal of Education and Humanities, 1(3), 162–170.

Downloads

Published

2026-02-11

How to Cite

MODEL KLASIFIKASI PENERIMA PROGRAM KARTU INDONESIA PINTAR MENGGUNAKAN METODE XGBOOST. (2026). INTI Nusa Mandiri, 20(2), 230-237. https://doi.org/10.33480/inti.v20i2.7770

Most read articles by the same author(s)