STUDI KOMPARATIF ALGORITMA C4.5 DAN RANDOM FOREST PADA DIGITALISASI UMKM KABUPATEN TEGAL

Penulis

DOI:

https://doi.org/10.33480/inti.v20i2.7416

Kata Kunci:

C4.5, CRISP-DM, Digitalization, UMKM, Random Forest

Abstrak

Digital transformation has become an essential necessity for Micro, Small, and Medium Enterprises (UMKM) to enhance their competitiveness in the era of Industry 4.0. However, in Tegal Regency, the level of digitalization adoption among MSMEs remains varied and tends to be low, thus requiring further investigation. This study aims to compare the performance of the C4.5 and Random Forest algorithms in classifying the level of digitalization of MSMEs in Tegal Regency. This research employs the CRISP-DM methodology, which includes business understanding, data understanding, data preparation, modeling, evaluation, and implementation. Primary data were collected through questionnaires distributed to 100 MSME respondents and processed using RapidMiner. The results indicate that the Random Forest algorithm demonstrates superior performance, achieving an average F1-score of 89.63%, accuracy of 91.43%, while the C4.5 algorithm records an average F1-score of 86.24%, accuracy of 90%. The highest F1-score for both algorithms is observed in the low digitalization category at 95%, which is consistent with the data distribution showing that the majority of MSMEs (59%) fall within this category. This study systematically integrates the CRISP-DM approach from business understanding to model implementation, resulting in a structured data analysis workflow that can be replicated by local governments or future researchers. Another novelty of this study lies in the finding that although Random Forest exhibits better classification performance than C4.5, the majority of MSMEs remain at a low level of digitalization. These results provide practical contributions as a basis for formulating more targeted and sustainable MSME digitalization policies at the local

Unduhan

Data unduhan tidak tersedia.

Referensi

Abdullah, A. (2025). Prediksi Banjir Di Kota Pontianak Menggunakan Metode. 8(1), 40–50.

Aria, R. R. (2025). Implementasi Algoritma K-Means untuk Pengelompokan Data Imunisasi Balita dengan Metode CRISP-DM. 9(1), 189–197.

Bhardwaj, R. B., & Chaurasia, S. R. (2022). Use of ANN, C4.5 and Random Forest Algorithm in the Evaluation of Seismic Soil Liquefaction. Journal of Soft Computing in Civil Engineering, 6(2), 92–106. https://doi.org/10.22115/SCCE.2022.314762.1380

Birgithri, A., Syafira, T., & Louise, N. (2024). Analisis Strategi Pemasaran UMKM untuk Meningkatkan Pertumbuhan Bisnis di Era Digital. Technomedia Journal, 9(1), 117–129. https://doi.org/10.33050/tmj.v9i1.2268

Dhewayani, F. N., Amelia, D., Alifah, D. N., Sari, B. N., & Jajuli, M. (2022). Implementasi K-Means Clustering untuk Pengelompokkan Daerah Rawan Bencana Kebakaran Menggunakan Model CRISP-DM. Jurnal Teknologi Dan Informasi, 12(1), 64–77. https://doi.org/10.34010/jati.v12i1.6674

Fajar, A., Jeffersen, S., Fadilla, R., Zaini, A. R., Sucipto, A., & Lubis, B. O. (2025). PREDIKSI KELAYAKAN SISWA SMA NEGERI JAKARTA SELATAN. 9(2), 3446–3455.

Hasanah, M. A., Soim, S., & Handayani, A. S. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), 103–108. https://doi.org/10.30871/jaic.v5i2.3200

Ismanto, E., & Novalia, M. (2021). Komparasi Kinerja Algoritma C4.5, Random Forest, dan Gradient Boosting untuk Klasifikasi Komoditas. Techno.Com, 20(3), 400–410. https://doi.org/10.33633/tc.v20i3.4576

Khasanah, N., Komarudin, R., Afni, N., Maulana, Y. I., & Salim, A. (2021). Skin Cancer Classification Using Random Forest Algorithm. Sisfotenika, 11(2), 137. https://doi.org/10.30700/jst.v11i2.1122

Kurniawan, D., & Yasir, M. (2022). Optimization Sentimen Analysis using CRISP-DM and Naive Bayes Methods Implemented on Social Media. Cyberspace: Jurnal Pendidikan Teknologi Informasi, 6(2), 74. https://doi.org/10.22373/cj.v6i2.12793

Melfia, M. A., Ramadhini, K. A., Maulana, M. A., Dasiva, A. L., Briantoro, A. A., & Lubis, B. O. (2023). Penerapan Data Mining untuk Klasifikasi Penyakit Stroke Menggunakan Algoritma Naïve Bayes. Jurnal SAINTEKOM, 13(1), 42–54. https://doi.org/10.33020/saintekom.v13i1.352

Muhammad Nur Ihsan Muhlashin, & Stefanie, A. (2023). Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Menggunakan YOLO V8. JATI (Jurnal Mahasiswa Teknik Informatika), 7(2), 1363–1368. https://doi.org/10.36040/jati.v7i2.6927

Rais, A. N., Putra, J. L., Informatika, P. S., Bina, U., Informatika, S., Pusat, K. J., Studi, P., Informasi, S., Kampus, A., Tegal, K., Pusat, K. J., Informatika, P. S., Informasi, F. T., Mandiri, U. N., Melayu, C., & Timur, K. J. (2025). OPTIMASI PREDIKSI RISIKO KREDIT DENGAN PREPROCESSING DAN. 9(1), 59–65.

Rininda, G., Hartami Santi, I., & Kirom, S. (2024). Penerapan Svm Dalam Analisis Sentimen Pada Edlink Menggunakan Pengujian Confusion Matrix. JATI (Jurnal Mahasiswa Teknik Informatika), 7(5), 3335–3342. https://doi.org/10.36040/jati.v7i5.7420

Salsabila, F., Fitrianti, I., Umaidah, Y., & HeryanA, N. (2021). P Enerapan M Etode C Ustomer R Elationship M Anagement P Ada. 26, 38–46.

Yudiana, Y., Yulia Agustina, A., & Nur Khofifah, dan. (2023). Prediksi Customer Churn Menggunakan Metode CRISP-DM Pada Industri Telekomunikasi Sebagai Implementasi Mempertahankan Pelanggan. Indonesian Journal of Islamic Economics and Business, 8(1), 01–20.

Diterbitkan

2026-02-11

Cara Mengutip

STUDI KOMPARATIF ALGORITMA C4.5 DAN RANDOM FOREST PADA DIGITALISASI UMKM KABUPATEN TEGAL. (2026). INTI Nusa Mandiri, 20(2), 222-229. https://doi.org/10.33480/inti.v20i2.7416

Artikel paling banyak dibaca berdasarkan penulis yang sama