CLASSIFICATION OF PAPAYA NUTRITION BASED ON MATURITY WITH DIGITAL IMAGE AND ARTIFICIAL NEURAL NETWORK
DOI:
https://doi.org/10.33480/jitk.v11i2.7070Keywords:
Papaya Nutrition , Ripeness Level , Digital Image Processing , Classification , Artificial Neural NetworkAbstract
Papaya is a tropical fruit with high nutritional content and significant health benefits. Nutritional components such as sugars, vitamin C, and fibre are strongly influenced by ripeness level. Identifying these nutrients usually requires laboratory tests that are time-consuming and rely on sophisticated equipment. Previous studies have focused on classifying ripeness levels, yet none have specifically addressed the classification of nutritional content. This study proposes a classification system for papaya nutrition based on ripeness using digital image processing and artificial neural networks (ANN). The method consists of six stages: image acquisition, preprocessing, segmentation, morphology, feature extraction, and classification with a trained ANN model. Experiments were conducted to evaluate feature combinations, including colour and texture features. The combination of LAB colour features and texture features-contrast, correlation, energy, and homogeneity-produced the best results. Testing on 75 images achieved an average precision of 97.22%, recall of 96.67%, F1-Score of 96.80%, and accuracy of 97.33%, with an average computation time of 0.02 seconds per image. These findings indicate that the proposed method provides fast and highly accurate classification of papaya’s nutritional content, offering a practical alternative to laboratory testing. Nevertheless, the study is limited by the relatively small dataset and controlled acquisition environment. Future research should extend the dataset, incorporate deep learning approaches, and validate performance under real-world conditions to enhance robustness and generalization
Downloads
References
Y. E. sispita Sari dan D. Artanti, “Gambaran Cemaran Kapang Kontaminan Pada Buah Pepaya (Carica papaya L) Selama Penyimpanan,” Pedago Biol. J. Pendidik. dan Pembelajaran Biol., vol. 10, no. 2, hal. 60, 2022, doi: 10.30651/pb:jppb.v10i2.17633.
K. B. D. R. Nur Widyasari, U. D. Rosiani, dan A. N. Pramudhita, “Implementasi Sistem Pendeteksi Tingkat Kematangan Buah Pepaya Menggunakan Metode RGB,” Smatika J., vol. 11, no. 1, hal. 32–36, 2021, doi: 10.32664/smatika.v11i01.536.
BPS, “Produksi Tanaman Buah-buahan,” Badan Pusat Statistik Indonesia. [Daring]. Tersedia pada: https://www.bps.go.id/id/statistics-table/2/NjIjMg%3D%3D/produksi-tanaman-buah-buahan.html
F. S. Naway, A. Engelen, dan A. -, “Minuman Fungsional Pepaya Super Thailand (Carica Pepaya L) Dengan Penambahan Santan Kelapa Dan Gula Aren,” Jambura J. Food Technol., vol. 5, no. 01, hal. 45–54, 2023, doi: 10.37905/jjft.v5i01.20094.
Susanti, G. K. Pangestu, dan U. Ciptiasrini, “Efektivitas Pemberian Pisang Ambon ( Musa Acuminata Cavendish ) Dan Buah Pepaya ( Carica Papaya ) Terhadap Peningkatan Hemoglobin Pada Ibu Hamil Trimester III Dengan Anemia Ringan Di Puskesmas Haurpanggung Kabupaten Garut Tahun 2024,” Innov. J. Soc. Sci. Res., vol. 4, hal. 5550–5557, 2024.
M. S. Hawibowo dan I. Muhimmmah, “Aplikasi Pendeteksi Tingkat Kematangan Pepaya menggunakan Metode Convolutional Neural Network (CNN) Berbasis Android,” J. Edukasi dan Penelit. Inform., vol. 10, no. 1, hal. 162, 2024, doi: 10.26418/jp.v10i1.77819.
P. A. Arza, “Pengaruh Lama Waktu Perebusan Terhadap Kandungan Zat Besi Dan Sianida Daun Pepaya Jepang (Cnidoscolus Aconitifolius),” Darussalam Nutr. J., vol. 7, no. 2, hal. 104–109, 2023, doi: 10.21111/dnj.v7i2.10742.
R. Dijaya, Buku Ajar Pengolahan Citra Digital. Sidoarjo: UMSIDA Press, 2023. doi: https://doi.org/10.21070/2023/978-623-464-075-5.
G. P. Aji dan M. I. Romzy, “Identifikasi Kematangan Buah Pepaya Dengan Pendekatan Non Destruktif Identifikasi Kematangan Buah Pepaya Dengan Pendekatan Non Destruktif,” Program Studi Teknik Elektro, Fakultas Teknologi Industi, Universitas Islam Indonesia, Yogyakarta, 2024.
S. W. Chung, Y. J. Jang, S. Kim, dan S. C. Kim, “Spatial and Compositional Variations in Fruit Characteristics of Papaya (Carica papaya cv. Tainung No. 2) during Ripening,” Plants, vol. 12, no. 7, 2023, doi: 10.3390/plants12071465.
Alfian Firlansyah, Andi Baso Kaswar, dan Andi Akram Nur Risal, “Klasifikasi Tingkat Kematangan Buah Pepaya Berdasarkan Fitur Warna Menggunakan JST,” Techno Xplore J. Ilmu Komput. dan Teknol. Inf., vol. 6, no. 2, hal. 55–60, 2021, doi: 10.36805/technoxplore.v6i2.1438.
L. A. Wardani, I. G. P. S. Wijaya, dan F. Bimantoro, “Klasifikasi Jenis Dan Tingkat Kematangan Buah Pepaya Berdasarkan Fitur Warna, Tekstur Dan Bentuk Menggunakan Support Vector Machine,” Jurnall Teknol. Informasi, Komput. dan Apl., vol. 4, no. 1, hal. 75–87, 2022, [Daring]. Tersedia pada: http://jtika.if.unram.ac.id/index.php/JTIKA/
T. Sawicki, M. Jabłońska, M. Starowicz, B. Szmatowicz, P. Latocha, dan W. Błaszczak, “Nutritional quality and sensory attributes of Actinidia arguta fruit purée: Effect of pasteurization vs. high hydrostatic pressure treatment,” Lwt, vol. 230, no. June, 2025, doi: 10.1016/j.lwt.2025.118289.
M. Alam et al., “Characterization and evaluation of flour’s physico-chemical, functional, and nutritional quality attributes from edible and non-edible parts of papaya,” J. Agric. Food Res., vol. 15, no. March, hal. 100961, 2024, doi: 10.1016/j.jafr.2023.100961.
Suharyanto, Wimpy, dan V. Christiana, “Potensi Vitamin C Dengan pada Buah Ppepaya Bangkok (Carica papaya L.) Sebagai Imunostimulan pada Pandemi Covid 19 dengan Waktu Penyimpananyang Bervariasi,” Peran Mikronutrisi Sebagai Upaya Pencegah. Covid-19, vol. 11, no. 1, hal. 1–8, 2022.
F. H. Laia, R. Rosnelly, K. Buulolo, M. Christin Lase, dan A. Naswar, “Klasifikasi Kematangan Buah Mangga Madani Berdasarkan Bentuk Dengan Jaringan Syaraf Tiruan Metode Perception,” Device, vol. 13, no. 1, hal. 14–20, 2023.
F. Xiao, H. Wang, Y. Li, Y. Cao, X. Lv, dan G. Xu, “Object Detection and Recognition Techniques Based on Digital Image Processing and Traditional Machine Learning for Fruit and Vegetable Harvesting Robots: An Overview and Review,” Agronomy, vol. 13, no. 3, 2023, doi: 10.3390/agronomy13030639.
Wulandari, Sasmita, M. R. Mulia, A. B. Kaswar, D. D. Andayani, dan A. S. Agung, “Klasifikasi Kandungan Nutrisi Buah Pisang Berdasarkan Fitur Tekstur dan Warna LAB menggunakan Jaringan Syaraf Tiruan Berbasis Pengloahan Citra Digital,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 3, hal. 507–518, 2024, doi: 10.25126/jtiik.938332.
J. Saputra, Y. Sa, V. Yoga Pudya Ardhana, dan M. Afriansyah, “RESOLUSI : Rekayasa Teknik Informatika dan Informasi Klasifikasi Kematangan Buah Alpukat Mentega Menggunakan Metode K-Nearest Neighbor Berdasarkan Warna Kulit Buah,” Media Online, vol. 3, no. 5, hal. 347–354, 2023.
E. Tapia-Mendez, I. A. Cruz-Albarran, S. Tovar-Arriaga, dan L. A. Morales-Hernandez, “Deep Learning-Based Method for Classification and Ripeness Assessment of Fruits and Vegetables,” Appl. Sci., vol. 13, no. 22, 2023, doi: 10.3390/app132212504.
I. Ishak, I. Amal, M. Muhammad, dan A. B. Kaswar, “Sistem Pendeteksi Kematangan Buah Tomat Berbasis Pengolahan Citra Digital Menggunakan Metode Jaringan Syaraf Tiruan,” J. Mediat., vol. 5, no. 1, hal. 65–69, 2022, [Daring]. Tersedia pada: https://ojs.unm.ac.id/mediaTIK/article/view/33214/15753
Y. Lu, X. Kong, L. Yu, L. Yu, dan Q. Liu, “XFruitSeg—A general plant fruit segmentation model based on CT imaging,” Plant Phenomics, vol. 7, no. 2, 2025, doi: 10.1016/j.plaphe.2025.100055.
R. Rusli et al., “Klasifikasi Tingkat Kemanisan Buah Kersen Berdasarkan Fitur Warna NTSC Menggunakan Jaringan Syaraf Tiruan Berbasis Pengolahan Citra Digital,” Fakt. Exacta, vol. 17, no. 3, hal. 294–305, 2024, doi: 10.30998/faktorexacta.v17i3.23322.
A. Syarifah, A. A. Riadi, dan A. Susanto, “Klasifikasi Tingkat Kematangan Jambu Bol Berbasis Pengolahan Citra Digital Menggunakan Metode K-Nearest Neighbor,” J. Inform. Merdeka Pasuruan, vol. 7, no. 1, hal. 27–35, 2022.
Y. Shahedi, M. Zandi, dan M. Bimakr, “A computer vision system and machine learning algorithms for prediction of physicochemical changes and classification of coated sweet cherry,” Heliyon, vol. 10, no. 20, hal. e39484, 2024, doi: 10.1016/j.heliyon.2024.e39484.
G. Cong et al., “YOLOv8-Scm: an improved model for citrus fruit sunburn identification and classification in complex natural scenes,” Front. Plant Sci., vol. 16, no. July, hal. 1–16, 2025, doi: 10.3389/fpls.2025.1591989.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Andi Ahmad Taufiq, Hanum Zalsabilah Idham, Muh Fuad Zahran Firman, Andi Baso Kaswar, Dyah Darma Andayani, Muhammad Fajar B, Abdul Muis Mappalotteng, Andi Tenriola

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






-a.jpg)
-b.jpg)











