COMPARATION OF CLASSIFICATION ALGORITHM ON SENTIMENT ANALYSIS OF ONLINE LEARNING REVIEWS AND DISTANCE EDUCATION
Abstract
As of January 27, 2021, confirmed cases of COVID-19 nationally stood at 1,024,298 people, this data is data that has been officially announced by the Indonesian Ministry of Health. Meanwhile, in Jakarta, there are 256,416 confirmed cases of COVID-19. In July 2021, there was a very significant increase, seeing the data caused the Central government to make a decision to continue the Large-Scale Social Restrictions (PSBB), followed by the Enforcement of Restrictions on Community Activities (PPKM), which affected all aspects, especially the education aspect. In the education aspect, the government applies distance and online learning. Of course, many people agree or disagree with this decision, because there must be sacrifices, both in terms of time and cost. Seeing these conditions makes the authors interested in discussing and processing public opinions on distance and online learning systems which certainly have positive and negative responses from learning implementers, to process the data the author uses Data Mining, namely using the Text Mining Classification method with several The classification algorithms are the Naïve Bayes Algorithm (NB), the k-Nearest Neighbor (k-NN) Algorithm and the Support Vector Machine (SVM) Algorithm to see which classification algorithm has the highest accuracy and diagnostic value in processing this opinion. After the calculations are done, the algorithm that is more suitable for analyzing reviews or opinions in this study is to use the Support Vector Machine (SVM) classification algorithm with the highest accuracy value of 87.67% and an AUC value of 0.939 with an Excellent Classification diagnostic level.
References
Ariani, F., & Taufik, A. (2020). Perbandingan Metode Klasifikasi Data Mining untuk Prediksi Tingkat Kepuasan Pelanggan Telkomsel Prabayar. SATIN-Sains Dan Teknologi Informasi, 16(2), 46–55. http://jurnal.stmik-amik-riau.ac.id/index.php/satin/article/view/666
Ary, M., & Rismiati, D. A. F. (2019). Ukuran Akurasi Klasifikasi Penyakit Mesothelioma Menggunakan Algoritma K-Nearest Neighbor dan Backward Elimination. SATIN - Sains Dan Teknologi Informasi, 5(1), 11–18. https://doi.org/10.33372/stn.v5i1.444
Ernawati, S., & Wati, R. (2018). Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel. Jurnal Khatulistiwa Informatika, 6(1), 64–69. https://ejournal.bsi.ac.id/ejurnal/index.php/khatulistiwa/article/view/3802/
Gorunescu, F. (2011). Data Mining: Concepts, Models and Techniques. In Data mining - Concepts, Models and Technique. Springer. https://doi.org/10.1007/978-3-642-19721-5
Pelaksanaan Kebijakan Pendidikan Dalam Masa Darurat Penyebaran Co Ro Naviru S D/Sease (Covid-1 9), 300 (2020).
Kementrian Kesehatan Republik Indonesia. (2021). Kementrian Kesehatan Republik Indonesia Untuk Indonesia yang Lebih Sehat. Kementrian Kesehatan Republik Indonesia.
Kurniawan, Y. I. (2018). Perbandingan Algoritma Naive Bayes dan C.45 dalam Klasifikasi Data Mining. Jurnal Teknologi Informasi Dan Ilmu Komputer. https://doi.org/10.25126/jtiik.201854803
Laurensz, B., & Eko Sediyono. (2021). Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 10(2), 118–123. https://doi.org/10.22146/jnteti.v10i2.1421
Masripah, S., Utami, L. D., Amalia, H., Nurlaela, D., Ryansayah, M., & Yusuf, L. (2020). Comparison of Text Mining Classification Algorithms in Interbank Money Transfer Application. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012088
Nasution, M. R. A. N., & Hayaty, M. (2019). Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter. Jurnal Informatika, 6(2), 226–235.
Nurita, D. (2021). Ini 4 Pelonggaran Aktivitas PPKM Level 4 yang Diperpanjang Hingga 2 Agustus. Nasional Tempo.
Odoh, D. M., & Chinedum E, D. I. (2014). Research Designs, Survey and Case Study. IOSR Journal of VLSI and Signal Processing, 4(6), 16–22. https://doi.org/10.9790/4200-04611622
Pemprov DKI Jakarta. (2020a). Data Pemantauan Covid-19 Jakarta. Corona.Jakarta.Go.Id. https://corona.jakarta.go.id/id/data-pemantauan
Pemprov DKI Jakarta. (2020b). Wujudkan Jakarta Sehat, Aman, dan Produktif Jakarta Tanggap Covid-19. Jakarta Smart City. https://corona.jakarta.go.id/id
Que, V. K. S., Iriani, A., & Purnomo, H. D. (2020). Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(2), 162–170. https://doi.org/10.22146/jnteti.v9i2.102
Rahutomo, F., Saputra, P. Y., & Fidyawan, M. A. (2018). Implementasi Twitter Sentiment Analysis Untuk Review Film Menggunakan Algoritma Support Vector Machine. Jurnal Informatika Polinema, 4(2), 93–100. https://doi.org/10.33795/jip.v4i2.152
Ratnawati, F. (2018). Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter. INOVTEK Polbeng-Seri Informatika, 3(1), 50–59. http://ejournal.polbeng.ac.id/index.php/ISI/article/view/335
Sadikin, A., & Hamidah, A. (2020). Pembelajaran Daring di Tengah Wabah Covid-19. Biodik, 6(2), 109–119. https://doi.org/10.22437/bio.v6i2.9759
Saputra, N., Adji, T. B., & Permanasari, A. E. (2015). Analisis Sentimen Data Presiden Jokowi dengan Preprocessing Normalisasi dan Stemming Menggunakan Metode Naive Bayes dan SVM. Jurnal Dinamika Informatika, 5(11), 1–12.
Sari, R., & Hayuningtyas, R. Y. (2019). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Pada Wisata TMII Berbasis Website. Indonesian Journal on Software Engineering (IJSE), 5(2), 51–60. https://doi.org/10.31294/ijse.v5i2.6957
Somantri, O., & Khambali, M. (2017). Feature Selection Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes dan Algoritme Genetika. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI), 6(3), 301–306. https://doi.org/10.22146/jnteti.v6i3.332
Syarifuddin, M. (2020). Laporan Akhir Penelitian Mandiri: Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn.
Copyright (c) 2021 Lila Dini Utami, Siti Masripah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copyright of any article in the TECHNO Nusa Mandiri Journal is fully held by the author under the Creative Commons CC BY-NC license.
- The copyright in each article belongs to the author.
- Authors retain all their rights to published works, not limited to the rights set out on this page.
- The author acknowledges that Techno Nusa Mandiri: Journal of Computing and Information Technology (TECHNO Nusa Mandiri) is the first to publish with a Creative Commons Attribution 4.0 International license (CC BY-NC).
- Authors can enter articles separately, manage non-exclusive distribution, from manuscripts that have been published in this journal into another version (for example: sent to author affiliation respository, publication into books, etc.), by acknowledging that the manuscript was published for the first time in Techno Nusa Mandiri: Journal of Computing and Information Technology (TECHNO Nusa Mandiri);
- The author guarantees that the original article, written by the stated author, has never been published before, does not contain any statements that violate the law, does not violate the rights of others, is subject to the copyright which is exclusively held by the author.
- If an article was prepared jointly by more than one author, each author submitting the manuscript warrants that he has been authorized by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agrees to notify the co-authors of the terms of this policy. Techno Nusa Mandiri: Journal of Computing and Information Technology (TECHNO Nusa Mandiri) will not be held responsible for anything that may have occurred due to the author's internal disputes.