ANALYZING THE COMPARATIVE METHODS OF PREWITT, ROBINSON, KRISCH AND ROBERTS IN DETECTING THE EDGES OF RICE LEAVES

  • Nissa Almira Mayangky Universitas Nusa Mandiri
  • Nita Merlina Universitas Nusa Mandiri
  • Arfhan Prasetyo Universitas Nusa Mandiri
  • Dea Amelia Universitas Nusa Mandiri
  • Marcella Irsictia Universitas Nusa Mandiri
  • Mutmainah Putri Universitas Nusa Mandiri
Keywords: Krisch And Roberts, Prewitt, Robinson, Rice Leaves

Abstract

This research explores the vital role of rice in Indonesia as a staple food and primary source of income for farmers. Efforts are being made to increase rice production to meet the growing demand. The study focuses on object edge detection in image analysis, evaluating methods like Prewitt, Robinson, Krisch, and Roberts. Digital imaging plays a crucial part in visually presenting information, and image processing improves image quality for human and machine recognition. Detecting object edges, particularly in rice leaf images, is essential for computer inspection. The experiment on fifteen rice leaf images shows that the Krisch method performs better in edge detection, with a 52% average accuracy and smoothness. Other methods, such as Prewitt (6%), Robinson (11%), and Roberts (14%), have lower accuracy rates. These findings provide a foundation for enhancing edge detection in rice leaf image analysis. The study also emphasizes the need for refining classification models. Overall, this research provides insights into the effectiveness of edge detection methods in rice leaf image analysis.

References

Adianto, Indra Yanuareza. 2020. RICE POLICIES IN INDONESIA, FROM RICE SELF-SUFFICIENCY TO RICE SECURITY by Indra Yanuareza Adianto In7446ad-S@student.Lu.Se.

Armansyah, Muhammad Albi. 2022. “Aplikasi Pengolahan Image Mri Untuk Deteksi Area Kanker Otak Dengan Menggunakan Metode Robinson.” Journal of Informatics, Electrical and Electronics Engineering 1(3): 91–96.

Evsutin, Oleg. 2020. “Digital Steganography and Watermarking for Digital Images: A Review of Current Research Directions.” IEEE Access 8: 166589–611. doi:10.1109/ACCESS.2020.3022779.

Harakannanavar, Sunil S., Jayashri M. Rudagi, Veena I Puranikmath, Ayesha Siddiqua, and R Pramodhini. 2022. “Plant Leaf Disease Detection Using Computer Vision and Machine Learning Algorithms.” Global Transitions Proceedings 3(1): 305–10. doi:10.1016/j.gltp.2022.03.016.

Kaggle. “Rice Leaf.” https://www.kaggle.com/datasets.

Makandar, Aziz. 2022. “Impact of Edge Detection Algorithms on Different Types of Images Using PSNR and MSE.” LC International Journal of STEM (ISSN: 2708-7123) 3(4): 1–11. doi:10.5281/zenodo.7607059.

Mayangky, Nissa Almira. 2023. “Eye Pupil Image Segmentation Conducted with Intensity Adjustment Method and Active Contour Method.” https://pubs.aip.org/aip/acp/article-abstract/2714/1/030007/2889756/Eye-pupil-image-segmentation-conducted-with?redirectedFrom=fulltext.

Ranjan, Rakesh, and Dr. Vinay Avasthi. 2022. “Enhanced Edge Detection Technique in Digital Images Using Optimised Fuzzy Operation.” Webology 19(1): 5402–16. doi:10.14704/web/v19i1/web19362.

Richards, John A., and Xiuping Jia. 2022. Remote Sensing Digital Image Analysis Remote Sensing Digital Image Analysis. doi:10.1007/3-540-29711-1.

Ryu, Jihyoung. 2023. “Adaptive Feature Fusion and Kernel-Based Regression Modeling to Improve Blind Image Quality Assessment.” Applied Sciences (Switzerland) 13(13). doi:10.3390/app13137522.

Shah, Bickey Kumar, Vansh Kedia, Rohan Raut, Sakil Ansari, and Anshul Shroff. 2020. “Evaluation and Comparative Study of Edge Detection Techniques.” IOSR Journal of Computer Engineering 22(5): 6–15. doi:10.9790/0661-2205030615.

Sun, Rui, Tao Lei, Qi Chen, Zexuan Wang, Xiaogang Du, Weiqiang Zhao, and Asoke K. Nandi. 2022. “Survey of Image Edge Detection.” Frontiers in Signal Processing 2(March): 1–13. doi:10.3389/frsip.2022.826967.

Supriyatin, Wahyu. 2020. “Perbandingan Metode Sobel, Prewitt, Robert Dan Canny Pada Deteksi Tepi Objek Bergerak.” ILKOM Jurnal Ilmiah 12(2): 112–20. doi:10.33096/ilkom.v12i2.541.112-120.

Viscaino, Michelle, Matias Talamilla, Juan Cristóbal Maass, Pablo Henríquez, Paul H. Délano, Cecilia Auat Cheein, and Fernando Auat Cheein. 2022. “Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases.” Diagnostics 12(4): 1–13. doi:10.3390/diagnostics12040917.

Widiawati, Linda, and Novi Wulandari. 2019. “Akurasi Deteksi Tepi Wajah Dengan Metode Robert, Metode Prewitt Dan Metode Sobel.” Jurnal Ilmiah MIKA AMIK Al Muslim 3: 9. https://journal.almuslim.ac.id/index.php/mika/article/download/24/34/39.

Yasir, Muhammad, Sakaouth Hossain, Shah Nazir, Sulaiman Khan, Md Sakaouth Hossain, Rahul Thapa, Shah Hossain, Sulaiman Nazir, and Rahul Thapa Khan. 2022. “Object Identification Using Manipulated Edge Detection Techniques.” Science Development 3(1): 1–6. doi:10.11648/j.scidev.20220301.11.

Published
2024-03-31
How to Cite
Mayangky, N., Merlina, N., Prasetyo, A., Amelia, D., Irsictia, M., & Putri, M. (2024). ANALYZING THE COMPARATIVE METHODS OF PREWITT, ROBINSON, KRISCH AND ROBERTS IN DETECTING THE EDGES OF RICE LEAVES. Jurnal Techno Nusa Mandiri, 21(1), 37 - 43. https://doi.org/10.33480/techno.v21i1.5509