PERFORMANCE COMPARISON OF CLASSICAL ALGORITHMS AND DEEP NEURAL NETWORKS FOR TUBERCULOSIS PREDICTION

  • Gilgen Mate Landry Université Pédagogique Nationale, Kinshasa, Democratic Republic of Congo
  • Rodolphe Nsimba Malumba Institute National du Batiment et des Travaux Publics, Kinshasa, Democratic Republic of Congo
  • Fiston Chrisnovi Balanganayi Kabutakapua Department of Mathematics, Statistics and Computer Science, Faculty of Science and Technology, University of Kinshasa, D.R.Congon
  • Bopatriciat Boluma Mangata Section Informatique de Gestion, Haute Ecole de Commerce de Kinshasa, Kinshasa, Democratic Republic of Congo
Keywords: Convolutional Neural Networks, Deep Neural Networks, Machine Learning Algorithms, Performance Metrics, Tuberculosis Prediction

Abstract

This study compares the performance of several classical machine learning algorithms and deep neural networks for the prediction of tuberculosis in the Democratic Republic of Congo (DRC), using a sample of 1000 cases including clinical and demographic data. The sample is divided into two sets: 80% for training and 20% for testing. The algorithms evaluated include Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree, Random Forest and Convolutional Neural Networks (CNN). The results show that the CNN has the best overall performance with an accuracy of 94%, an AUC of the ROC curve of 93%, an accuracy of 90%, an accuracy of 95%, a sensitivity of 88%, an F1-score of 91.3% and a Log Loss of 0.0386. The Random Forest follows closely behind with an accuracy of 92% and an AUC of 86%. The SVM and KNN models also performed strongly, but slightly less well. The Decision Tree obtained acceptable results, but inferior to the other algorithms evaluated. These results indicate that deep neural networks, and in particular the CNN, are superior for predicting tuberculosis compared with conventional machine learning algorithms. This superiority is particularly marked in terms of accuracy, sensitivity and reliability of predictions, as shown by the performance metrics obtained.

References

Ağbulut, Ü., Gürel, A. E., & Biçen, Y. (2021). Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews, 135, 110114. https://doi.org/10.1016/J.RSER.2020.110114

Auld, A. F., Kerkhoff, A. D., Hanifa, Y., Wood, R., Charalambous, S., Liu, Y., Agizew, T., Mathoma, A., Boyd, R., Date, A., Shiraishi, R. W., Bicego, G., Mathebula-Modongo, U., Alexander, H., Serumola, C., Rankgoane-Pono, G., Pono, P., Finlay, A., Shepherd, J. C., … Fielding, K. (2021). Derivation and external validation of a risk score for predicting HIV-associated tuberculosis to support case finding and preventive therapy scale-up: A cohort study. PLOS Medicine, 18(9), e1003739. https://doi.org/10.1371/JOURNAL.PMED.1003739

Chinagudaba, S. N., Gera, D., Dasu, K. K. V., S, U. S., K, K., Singarajpure, A., U, S., N, S., Chadda, V. K., & N, S. B. (2024). Predictive Analysis of Tuberculosis Treatment Outcomes Using Machine Learning: A Karnataka TB Data Study at a Scale. https://arxiv.org/abs/2403.08834v1

Hrizi, O., Gasmi, K., Ben Ltaifa, I., Alshammari, H., Karamti, H., Krichen, M., Ben Ammar, L., & Mahmood, M. A. (2022). Tuberculosis Disease Diagnosis Based on an Optimized Machine Learning Model. Journal of Healthcare Engineering, 2022(1), 8950243. https://doi.org/10.1155/2022/8950243

Huang, J. C., Ko, K. M., Shu, M. H., & Hsu, B. M. (2020). Application and comparison of several machine learning algorithms and their integration models in regression problems. Neural Computing and Applications, 32(10), 5461–5469. https://doi.org/10.1007/S00521-019-04644-5/METRICS

Jha, K. K., Jha, R., Jha, A. K., Hassan, M. A. M., Yadav, S. K., & Mahesh, T. (2021). A Brief Comparison on Machine Learning Algorithms Based on Various Applications: A Comprehensive Survey. CSITSS 2021 - 2021 5th International Conference on Computational Systems and Information Technology for Sustainable Solutions, Proceedings. https://doi.org/10.1109/CSITSS54238.2021.9683524

Kazemzadeh, S., Yu, J., Jamshy, S., Pilgrim, R., Nabulsi, Z., Chen, C., Beladia, N., Lau, C., McKinney, S. M., Hughes, T., Kiraly, A. P., Kalidindi, S. R., Muyoyeta, M., Malemela, J., Shih, T., Corrado, G. S., Peng, L., Chou, K., Cameron Chen, P. H., … Prabhakara, S. (2023). Deep Learning Detection of Active Pulmonary Tuberculosis at Chest Radiography Matched the Clinical Performance of Radiologists. Radiology, 306(1), 124–137. https://doi.org/10.1148/RADIOL.212213/ASSET/IMAGES/LARGE/RADIOL.212213.FIG7.JPEG

Khanam, J. J., & Foo, S. Y. (2021). A comparison of machine learning algorithms for diabetes prediction. ICT Express, 7(4), 432–439. https://doi.org/10.1016/J.ICTE.2021.02.004

Kratsch, W., Manderscheid, J., Röglinger, M., & Seyfried, J. (2021). Machine Learning in Business Process Monitoring: A Comparison of Deep Learning and Classical Approaches Used for Outcome Prediction. Business and Information Systems Engineering, 63(3), 261–276. https://doi.org/10.1007/S12599-020-00645-0/TABLES/5

La RDC mise sur les campagnes de dépistage actif gratuit des cas au sein de la population pour réduire l’infection tuberculeuse latente | OMS | Bureau régional pour l’Afrique. (n.d.). Retrieved August 22, 2024, from https://www.afro.who.int/fr/countries/democratic-republic-of-congo/news/la-rdc-mise-sur-les-campagnes-de-depistage-actif-gratuit-des-cas-au-sein-de-la-population-pour

Lane, T. R., Foil, D. H., Minerali, E., Urbina, F., Zorn, K. M., & Ekins, S. (2021). Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery. Molecular Pharmaceutics, 18(1), 403–415. https://doi.org/10.1021/ACS.MOLPHARMACEUT.0C01013/SUPPL_FILE/MP0C01013_SI_001.PDF

Lane, T. R., Urbina, F., Rank, L., Gerlach, J., Riabova, O., Lepioshkin, A., Kazakova, E., Vocat, A., Tkachenko, V., Cole, S., Makarov, V., & Ekins, S. (2022). Machine Learning Models for Mycobacterium tuberculosis in Vitro Activity: Prediction and Target Visualization. Molecular Pharmaceutics, 19(2), 674–689. https://doi.org/10.1021/ACS.MOLPHARMACEUT.1C00791/SUPPL_FILE/MP1C00791_SI_002.ZIP

Liu, Y., Liang, Z., Yang, J., Yuan, S., Wang, S., Huang, W., & Wu, A. (2024). Diagnostic and comparative performance for the prediction of tuberculous pleural effusion using machine learning algorithms. International Journal of Medical Informatics, 182, 105320. https://doi.org/10.1016/J.IJMEDINF.2023.105320

Nabulsi, Z., Sellergren, A., Jamshy, S., Lau, C., Santos, E., Kiraly, A. P., Ye, W., Yang, J., Pilgrim, R., Kazemzadeh, S., Yu, J., Kalidindi, S. R., Etemadi, M., Garcia-Vicente, F., Melnick, D., Corrado, G. S., Peng, L., Eswaran, K., Tse, D., … Shetty, S. (2021). Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19. Scientific Reports 2021 11:1, 11(1), 1–15. https://doi.org/10.1038/s41598-021-93967-2

Olmez, E., Orhan, E., & Hiziroglu, A. (2021). Deep Learning in BioMedical Applications : Detection of Lung Disease with Convolutional Neural Networks. Deep Learning in Biomedical and Health Informatics, 97–115. https://doi.org/10.1201/9781003161233-5

Pathak, K. C., Kundaram, S. S., Sarvaiya, J. N., & Darji, A. D. (2022). Diagnosis and Analysis of Tuberculosis Disease Using Simple Neural Network and Deep Learning Approach for Chest X-Ray Images. Intelligent Systems Reference Library, 206, 77–102. https://doi.org/10.1007/978-3-030-76732-7_4

Rashidi, H. H., Dang, L. T., Albahra, S., Ravindran, R., & Khan, I. H. (2021). Automated machine learning for endemic active tuberculosis prediction from multiplex serological data. Scientific Reports 2021 11:1, 11(1), 1–12. https://doi.org/10.1038/s41598-021-97453-7

RDC : en finir avec la tuberculose grâce au dépistage précoce | OMS | Bureau régional pour l’Afrique. (n.d.). Retrieved August 22, 2024, from https://www.afro.who.int/fr/node/19369

Robinson, M. C., Glen, R. C., & Lee, A. A. (2020). Validating the validation: reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction. Journal of Computer-Aided Molecular Design, 34(7), 717–730. https://doi.org/10.1007/S10822-019-00274-0/FIGURES/8

Sahlol, A. T., Elaziz, M. A., Jamal, A. T., Damaševičius, R., & Hassan, O. F. (2020). A Novel Method for Detection of Tuberculosis in Chest Radiographs Using Artificial Ecosystem-Based Optimisation of Deep Neural Network Features. Symmetry 2020, Vol. 12, Page 1146, 12(7), 1146. https://doi.org/10.3390/SYM12071146

Sathitratanacheewin, S., Sunanta, P., & Pongpirul, K. (2020). Deep learning for automated classification of tuberculosis-related chest X-Ray: dataset distribution shift limits diagnostic performance generalizability. Heliyon, 6(8). https://doi.org/10.1016/j.heliyon.2020.e04614

Sekeroglu, B., Hasan, S. S., & Abdullah, S. M. (2020). Comparison of Machine Learning Algorithms for Classification Problems. Advances in Intelligent Systems and Computing, 944, 491–499. https://doi.org/10.1007/978-3-030-17798-0_39

Sharifani, K., & Amini, M. (2023). Machine Learning and Deep Learning: A Review of Methods and Applications. https://papers.ssrn.com/abstract=4458723

Sharma, A., Machado, E., Lima, K. V. B., Suffys, P. N., & Conceição, E. C. (2022). Tuberculosis drug resistance profiling based on machine learning: A literature review. Brazilian Journal of Infectious Diseases, 26(1), 102332. https://doi.org/10.1016/J.BJID.2022.102332

Thapa, N., Liu, Z., Kc, D. B., Gokaraju, B., & Roy, K. (2020). Comparison of Machine Learning and Deep Learning Models for Network Intrusion Detection Systems. Future Internet 2020, Vol. 12, Page 167, 12(10), 167. https://doi.org/10.3390/FI12100167

Wang, P., Fan, E., & Wang, P. (2021). Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognition Letters, 141, 61–67. https://doi.org/10.1016/J.PATREC.2020.07.042

Ye, Q., Chai, X., Jiang, D., Yang, L., Shen, C., Zhang, X., Li, D., Cao, D., & Hou, T. (2021). Identification of active molecules against Mycobacterium tuberculosis through machine learning. Briefings in Bioinformatics, 22(5). https://doi.org/10.1093/BIB/BBAB068

Published
2024-09-23
How to Cite
Mate Landry, G., Nsimba Malumba, R., Balanganayi Kabutakapua, F. C., & Boluma Mangata, B. (2024). PERFORMANCE COMPARISON OF CLASSICAL ALGORITHMS AND DEEP NEURAL NETWORKS FOR TUBERCULOSIS PREDICTION. Jurnal Techno Nusa Mandiri, 21(2), 126 - 133. https://doi.org/10.33480/techno.v21i2.5609