ANALISIS KINERJA ALGORITMA C4.5 DAN NAÏVE BAYES UNTUK MEMPREDIKSI PRESTASI SISWA SEKOLAH MENENGAH KEJURUAN

  • Astrid Noviriandini Bina Sarana Informatika
  • Nurajijah Nurajijah STMIK Nusa Mandiri
Keywords: Data Mining, c.45, Naive bayes, Student Achievement

Abstract

This research informs students and teachers to anticipate early in following the learning period in order to get maximum learning outcomes. The method used is C4.5 decision tree algorithm and Naïve Bayes algorithm. The purpose of this study was to compare and evaluate the decision tree model C4.5 as the selected algorithm and Naïve Bayes to find out algorithms that have higher accuracy in predicting student achievement. Learning achievement can be measured by the value of report cards. After comparison of the two algorithms, the results of the learning achievement prediction are obtained. The results showed that the Naïve Bayes algorithm had an accuracy value of 95.67% and the AUC value of 0.999 was included in Excellent Clasification, for the C4.5 algorithm the accuracy value was 90.91% and the AUC value of 0.639 was included in the state of Poor Clasification. Thus the Naïve Bayes algorithm can better predict student achievement.

References

Andini, T. I., Witanti, W., & Renaldi, F. (2016). Prediksi Potensi Pemasaran Produk Baru dengan Metode Naïve Bayes Classifier dan Regresi Linear. Seminar Nasional Aplikasi Teknologi Informasi (SNATi), 27–32.

Arora, R. K. (2013). Evaluating Student ’ s Performance Using k-Means Clustering, 8491.

Defiyanti Sofi, M. K. (2013). Analisis dan Prediksi Kinerja Mahasiswa Menggunakan Teknik Data Mining. Syntak, 2, 1–10.

Mariño, M. A., Rezende, C. A., & Tasic, L. (2018). A multistep mild process for preparation of nanocellulose from orange bagasse. Cellulose, 25(10),5739–5750. https://doi.org/10.1007/s10570-018-1977-y

Nelson Butarbutar, Agus Perdana Windarto, Dedi Hartama, S. (2016). Komparasi Kinerja Algoritma Fuzzy C-Means Dan K-Means Dalam Pengelompokan Data Siswa Berdasarkan Prestasi Nilaiakademik Siswa. JURASIK (Jurnal Riset Sistem Informasi & Teknik Informatika), 1(2012), 46–55. https://doi.org/10.30645/jurasik.v1i1.8

Novandya, Adhika., Oktria, I. (2017). Penerapan Algoritma Klasifikasi Data Mining C4.5 Pada Dataset Cuaca Wilayah Bekasi. Jurnal Format, 6(2),98–106. https://doi.org/10.1016/j.surfcoat.2005.02.204

Pagnotta, F. (2016). Using Data Mining To Predict Secondary Using Data Mining To Predict Secondary School, 2014(September), 0–9. https://doi.org/10.13140/RG.2.1.1465.8328

Purba, W., Tamba, S., & Saragih, J. (2018). The effect of mining data k-means clustering toward students profile model drop out potential. Journal of Physics: Conference Series,1007(1). https://doi.org/10.1088/1742-6596/1007/1/012049

Puspita, A., & Wahyudi, M. (2015). Algoritma C4.5 Berbasis Decision Tree untuk Prediksi Kelahiran Bayi Prematur. Konferensi Nasinal Ilmu Pengetahuan Dan Teknologi (KNIT), 1(1), 97–102. Retrieved from http://konferensi.nusamandiri.ac.id/proceeding/index.php/KNIT/article/view/175

Rima Ramadhani, D. (2014). Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi. Industrial Marketing Management, 1(1), 1–9. https://doi.org/10.1016/j.indmarman.2016.05.016

Shovon, H. I., & Haque, M. (2012). An Approach of Improving Student ’ s Academic Performance by using K-means clustering algorithm and Decision tree. International Journal of Advanced Computer Science and Applications, 3(8), 146–149.

Sri Rahayu, Dodon T. Nugrahadi, F. I. (2014). Clustering Penentuan Potensi Kejahatan Daerah Di Kota Banjarbaru Dengan Metode K-Means. Kumpulan jurnaL Ilmu Komputer (KLIK), 1(1), 33–45.

Susanto, Heri, and sudiyatno. 2014. “Data Mining Untuk Memprediksi Prestasi Siswa Berdasarkan Sosial Ekonomi, Motivasi, Kedisiplinan Dan Prestasi Masa Lalu.” Jurnal Pendidikan Vokasi 4(2): 222–31. http://journal.uny.ac.id/index.php/jpv/article/view/2547.

Widodo, & Wahyuni, D. (2017). Implementasi algoritma k-means clustering untuk mengetahui bidang skripsi mahasiswa multimedia pendidikan teknik informatika dan komputer universitas negeri jakarta. Pinter,1(2),157–156. https://doi.org/10.21009/pinter.1.2.10

Published
2019-08-07
How to Cite
Noviriandini, A., & Nurajijah, N. (2019). ANALISIS KINERJA ALGORITMA C4.5 DAN NAÏVE BAYES UNTUK MEMPREDIKSI PRESTASI SISWA SEKOLAH MENENGAH KEJURUAN. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 5(1), 23-28. https://doi.org/10.33480/jitk.v5i1.607
Article Metrics

Abstract viewed = 108 times
PDF downloaded = 115 times