





Testing is a process that becomes a standard in producing quality software. In predictions of software defects, prediction errors are very bad. Incorrect and inappropriate data sets result in inaccurate prediction results will be affect the software itself. This study aims to overcome the problem of class imbalance with the software defect prediction data set, through the Random Undersampling (RUS) data level approach by taking several algorithms namely Naive Bayes (NB), J48 and Random Forest (RF) which aims to compare the accuracy level highest so that maximum results are obtained in the process of predicting software defects. From the results of this study it can be found that to overcome class imbalances using the Random Undersampling level data approach to predict software defects, the highest level of accuracy is obtained by the Random Forest algorithm with an accuracy rate of 71.932%.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to the PILAR Nusa Mandiri journal as the publisher of the journal, and the author also holds the copyright without restriction.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases, and its transmission by any form or media, such as electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc. , are allowed with written permission from the PILAR Nusa Mandiri journal.
PILAR Nusa Mandiri journal, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal. In any way, the contents of the articles and advertisements published in the PILAR Nusa Mandiri journal are the sole and exclusive responsibility of their respective authors and advertisers.