ANALISIS NEURAL NETWORK STRUKTUR BACKPROPAGATION SEBAGAI METODE PERAMALAN PADA PERHITUNGAN TINGKAT KEMISKINAN DI INDONESIA

  • Astriana Mulyani (1*) Teknik Informatika STMIK Nusa Mandiri

  • (*) Corresponding Author
Keywords: Neural Network, Backpropagation

Abstract

Poverty is a condition in which people lack ability in traditionally devoted their primary. (Boa,2008) defines "Structural poverty is poverty, suspected uncaused structure from the condition of structures, or unfavorable life order". The expected amount of poverty can be reduced. In order to reduce the number of poverty to be known beforehand what factors are the cause of the poverty level is high or low. With the Backpropagation Neural Network structures for forecasting the calculation of the poverty level in Indonesia. Based on the analysis carried out apparently backpropagation neural network method yields more accurate in forecasting the calculation of the poverty level in Indonesia because these methods do training repeatedly to get the best models and can also be analyzed mathematically.

References

Badan Pusat Statistika. 2012. Statistika Kemiskinan 2007-2012. Jakarta: BPS Indonesia.

Boa, Handayani.2008. Analisis Model Kemiskinan Perdesaan di Indonesia. EEP Vol 5 no 1. 27 Februari 2013.

Fuad FM.2011. Prediksi Ketersediaan Beras di Masyarakat dengan Menggunakan Logika Fuzzy dan Jaringan Syaraf Tiruan dalam Upaya Peningkatan Ketahanan Pangan. AGROINTEK Volume 5, No.1 Maret 2005.

Kusrini,&Luthfi, E. T.2009.Algoritma Data Mining. Yogyakarta: Andi Publishing.

Kusumadewi, Sri dan Purnomo, Hari.2010. Aplikasi Logika Fuzzy Untuk Pendukung Keputusan. Yogyakarta: Graha Ilmu.

Rohmatullah dan Marimin.2007. Logika Fuzzy dan Jaringan Syaraf Tiruan untuk Peningkatan Mutu The Hitam. Jurnal Teknologi dan Industri Pangan, Vol. XVIII No.2 tahun 2007.

Septiani, Winnie dan Marimin. 2005. Sistem Intelijen Prediksi dan Penilaian Kualitas Susu Pasteurisasi dengan menggunakan Logika Fuzzy dan Jaringan Syaraf Tiruan. Yogyakarta: Seminar Nasional Aplikasi Teknologi Informasi 2005, Juni 2005.

Sumathi, S., Sivanandam, S.N. 2006. Introduction to Data Mining and its Applications. Berlin Heidelberg New York: Springer

Vercellis, Carlo (2009). Business Intelligent: Data Mining and Optimization for Decision Making. Southern Gate, Chichester, West Sussex: John Willey & Sons, Ltd.
Published
2016-03-15
How to Cite
Mulyani, A. (2016). ANALISIS NEURAL NETWORK STRUKTUR BACKPROPAGATION SEBAGAI METODE PERAMALAN PADA PERHITUNGAN TINGKAT KEMISKINAN DI INDONESIA. Jurnal Techno Nusa Mandiri, 13(1), 9-14. Retrieved from http://ejournal.nusamandiri.ac.id/index.php/techno/article/view/212
Article Metrics

Abstract viewed = 64 times
PDF downloaded = 51 times