ALGORITMA KLASIFIKASI NAIVE BAYES DAN SUPPORT VECTOR MACHINE DALAM LAYANAN KOMPLAIN MAHASISWA

  • Hermanto Hermanto (1*) Teknologi Komputer Universitas Bina Sarana Informatika
  • Ali Mustopa (2) Ilmu Komputer STMIK Nusa Mandiri
  • Antonius Yadi Kuntoro (3) Ilmu Komputer STMIK Nusa Mandiri

  • (*) Corresponding Author
Keywords: Text Mining, Layanan Komplain, Support Vector Machine, Naive Bayes

Abstract

Service in the world of education is an important element for the creation of an academic atmosphere that is conducive to the implementation of a successful teaching and learning process. The process of service to students there is a tendency to be implemented not following the minimum service standards that must be provided to students so that students tend to complain about the services provided. Submission of criticism, complaints, input, or suggestions for dissatisfaction and problems that exist in the university environment is still very limited. Complaints can be constructive if submitted to the right place and party. In this research the data processing of email complaints from students conducted at the academic student body (students.bsi.ac.id). Student complaint data that will be processed is data in the form of * .xls complaint file. Before text data is analyzed using text mining methods, the pre-processing text needs to be done including tokenizing, case folding, stopwords, and stemming. After pre-processing, the classification method is then performed in classifying each complaint category and dividing the status into two parts, namely complaint and not complaint so that the status becomes a normal condition in text mining research. The purpose of this study is to obtain the most accurate algorithm in the classification of student complaints and can find out the results of the classification of the Naïve Bayes algorithm method and Support vector Machine used and compared. In this study, the results of testing by measuring the performance of these two algorithms using Cross-Validation, Confusion Matrix, and ROC Curves. The obtained Support vector Machine algorithm has the highest accuracy value compared to Naïve Bayes. AUC value = 0.922. for the Support vector machine method using the student academic data collection dataset (students.bsi.ac.id) has 84.45%, from the Naïve Bayes algorithm has an accuracy rate of about 69.75% and AUC value = 0.679.

References

Asiyah, S. N., & Fithriasari, K. (2016). Klasifikasi Berita Online Menggunakan Metode Support Vector Machine Dan K-Nearest Neighbor. Jurnal Sains Dan Seni ITS, 5(2), 317–322. https://doi.org/10.12962/j23373520.v5i2.16643

Basari, A. S. H., Hussin, B., Ananta, I. G. P., & Zeniarja, J. (2013). OpinionMining of Movie Review Using Hybrid Method of Support Vector Machine and Particle Swarm Optimization. Procedia Engineering, 53, 453–462. https://doi.org/10.1016/j.proeng.2013.02.059

Dharmendra, I. K., Saputra, K. O., & Pramaita, N. (2019). Analisa Sentiment Untuk Opini Alumni Pada Perguruan Tinggi. Majalah Ilmiah Teknologi Elektro, 18(2), 227–234. Retrieved from https://ocs.unud.ac.id/index.php/JTE/article/view/48059

Dumbill, E. (2014). Volume, Velocity, Variety: What You Need to Know About Big Data. Retrieved from https://www.forbes.com/sites/oreillymedia/2012/01/19/volume-velocity-variety-what-you-need-to-know-about-big-data/

Hamzah, A. (2012). Klasifikasi Teks Dengan Naïve Bayes Classifier (NBC) untuk Pengelompokan Teks Berita dan Abstract Akademis. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III, 269– 277.

Herawati, Fajar, A. (2013). Data Mining. Yogyakarta, Indonesia: Andi Offset.

Hermanto, Mustopa, A., & Kuntoro, A. Y. (2019). Hasil Akhir Penelitian Mandiri: Algoritma Klasifikasi Naive Bayes Dan Support Vector Machine Dalam Layanan Komplain Mahasiswa. Jakarta, Indonesia.

Indriyani, Susi, S. M. (2016). Pengaruh Penanganan Keluhan (Complaint Handling) Terhadap Kepercayaan Dan Komitmen Mahasiswa Pada Perguruan Tinggi Swasta Di Bandar Lampung. Jurnal Bisnis Darmajaya, 2(1), 1–13. Retrieved from https://jurnal.darmajaya.ac.id/index.php/JurnalBisnis/article/view/615/

Irfani, E. (2014). Prediksi Keluhan Pelanggan Pada Apartemen Menggunakan Algoritmac4.5. Jurnal Paradigma, 16(2), 13–20. Retrieved from https://ejournal.bsi.ac.id/ejurnal/index.php/paradigma/article/view/773

Kusmira, M. (2019). ANALISIS SENTIMEN REGISTRASI ULANG KARTU SIM PADA TWITTER MENGGUNAKAN ALGORITMA SVM DAN K-NN | INTI Nusa Mandiri. INTI Nusa Mandiri, 14(1), 105–110. Retrieved from http://ejournal.nusamandiri.ac.id/index.php/inti/article/view/541/

Monarizqa, N., Nugroho, L. E., & Hantono, B. S. (2014). Penerapan Analisis Sentimen Pada Twitter Berbahasa Indonesia Sebagai Pemberi Rating. Jurnal Penelitian Teknik Elektro Dan Teknologi Informasi, 1, 151–155.

Mukminin, A., & Riana, D. (2017). Komparasi Algoritma C4 . 5 , Naïve Bayes Dan Neural Network untuk Klasifikasi Tanah. Jurnal Informatika, 4(1), 21–31. Retrieved from https://pdfs.semanticscholar.org/fa81/c97fcc8eb80c32922b710dd20f7c3fad70d4.pdf

Nurajijah, & Riana, D. (2019). Algoritma Naïve Bayes, Decision Tree, dan SVM untuk KlasifikasiPersetujuan Pembiayaan Nasabah Koperasi Syariah. Jurnal Teknologi Dan Sistem Komputer, 7, no(10.14710/jtsiskom.7.2.2019), 77–82.

Pratama, E. E., & Trilaksono, B. R. (2015). Klasifikasi Topik Keluhan Pelanggan Berdasarkan Tweet dengan Menggunakan Penggabungan Feature Hasil Ekstraksi pada Metode Support Vector Machine (SVM). JEPIN, 1(2), 53-59. Retrieved from https://www.researchgate.net/profile/Riyanto_Bambang/publication/318962570_Klasifikasi_Topik_Keluhan_Pelanggan_Berdasarkan_Tweet_dengan_Menggunakan_Penggabungan_Feature_Hasil_Ekstraksi_pada_Metode_Support_Vector_Machine_SVM/links/59949897458515c0ce653243/

Rachmat, A., & Lukito, Y. (2016). Implementasi Sistem Crowdsourced Labelling Berbasis Web dengan Metode Weighted Majority Voting. Jurnal ULTIMA InfoSys, 6(2), 76–82. https://doi.org/10.31937/si.v6i2.223

Rachmi, H. (2017). Penerapan principal component analysis dan genetic algorithm pada analisis sentimen review pengiriman barang menggunakan algoritma support vector machine. Jurnal Evolusi, 5(2). Retrieved from https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/3130

Suyanto. (2017). Data Mining untuk Klasifikasi dan Klasterisasi Data. Bandung, Indonesia: Informatika.

Vulandari, R. (2017). Data Mining Teori dan Aplikasi Rapidminer. Surakarta, Indonesia: Penerbit Gava Media.

Xiang, Z., Schwartz, Z., Gerdes, J. H., & Uysal, M. (2015). What can big data and text analytics tell us about hotel guest experience and satisfaction? International Journal of Hospitality Management, 44, 120–130. https://doi.org/10.1016/j.ijhm.2014.10.013

Published
2020-02-01
How to Cite
Hermanto, H., Mustopa, A., & Kuntoro, A. (2020). ALGORITMA KLASIFIKASI NAIVE BAYES DAN SUPPORT VECTOR MACHINE DALAM LAYANAN KOMPLAIN MAHASISWA. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 5(2), 211-220. https://doi.org/10.33480/jitk.v5i2.1181
Article Metrics

Abstract viewed = 860 times
PDF downloaded = 147 times