ERFORMANCE ANALYSIS OF ALEXNET CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURE WITH IMAGE OBJECTS OF RICE PLANT LEAVES

  • Adi Fajaryanto Cobantoro (1*) Universitas Muhammadiyah Ponorogo
  • Fauzan Masykur (2) Universitas Muhammadiyah Ponorogo
  • Kelik Sussolaikah (3) Universitas PGRI Madiun

  • (*) Corresponding Author
Keywords: Convolutional Neural Network, Alexnet, Rice Leaves Image, CNN Classification

Abstract

Rice is a staple food consumed by Indonesian people, even 75% of the world's population consumes rice and it is mostly found in Asia. Rice derived from pounded rice is a staple food so it can be consumed. In the process of planting rice, pests and diseases are not spared so that it can affect crop yields. Pest and disease attacks need fast, accurate and precise handling so that crop failures. In this paper, we will discuss the classification of leaf diseases of rice plants using the Convolutional Neural Network (CNNN) algorithm, especially the Alexnet architecture. There are 4 types of disease, namely Brown spot, Leafblast, Hispa and Healthy. Models built based on the Alexnet architecture may have differences in the level of accuracy and loss compared to other architectures due to the different stages in the sequential model formation. The dataset used is public data from Kaggle consisting of 4 classes with a total of 1,600 images. In each class the dataset is divided for training, testing and validation datasets with a ratio of 70:20:10. As for tools in the process of training datasets using Google Colab from Google. After going through the stages of the research, the research results obtained are accuracy worth 99,22%, mean average precision worth 0,24 and loss worth 0,05.

Downloads

Download data is not yet available.

References

Taufan, Rafael, and Sebastiana, “Analisis Kelembagaan Hulu Industri Tape di Desa Sumber Tengah Kecamatan Binakal Kabupaten Bondowoso,” Jurnal Ekonomi Ekuilibrium, vol. 2, no. 2, pp. 40–51, 2018.

A. Amzeri, “Tinjauan Perkembangan Pertanian Jagung Di Madura Dan Alternatif Pengolahan Menjadi Biomaterial,” Rekayasa, vol. 11, no. 1, p. 74, 2018, doi: 10.21107/rekayasa.v11i1.4127.

M. Sayuthi, A. Hanan, P. Satriyo, and Muklis, “Distribusi hama tanaman padi ( Oryza sativa L .) pada fase vegetatif dan generatif di Provinsi Aceh,” Jurnal Agroecotenia, vol. 3, no. 1, pp. 1–10, 2020.

L. C. Ngugi, M. Abelwahab, and M. Abo-Zahhad, “Tomato leaf segmentation algorithms for mobile phone applications using deep learning,” Comput Electron Agric, vol. 178, Nov. 2020, doi: 10.1016/j.compag.2020.105788.

S. Ramesh and D. Vydeki, “Recognition and classification of paddy leaf diseases using Optimized Deep Neural network with Jaya algorithm,” Information Processing in Agriculture, vol. 7, no. 2, pp. 249–260, 2020, doi: 10.1016/j.inpa.2019.09.002.

W. Setiawan, “Perbandingan Arsitektur Convolutional Neural Network Untuk Klasifikasi Fundus,” Jurnal Simantec, vol. 7, no. 2, pp. 48–53, 2020, doi: 10.21107/simantec.v7i2.6551.

Alex Krizhevsky, “Handbook of approximation algorithms and metaheuristics,” Handbook of Approximation Algorithms and Metaheuristics, pp. 1–1432, 2007, doi: 10.1201/9781420010749.

D. Irfansyah, M. Mustikasari, and A. Suroso, “Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” Jurnal Informatika: Jurnal pengembangan IT (JPIT), vol. 6, no. 2, pp. 87–92, 2021.

N. Purnama, “HERBAL PLANT DETECTION BASED ON LEAVES IMAGE USING CONVOLUTIONAL NEURAL NETWORK WITH MOBILE NET ARCHITECTURE,” Jurnal Ilmu Pengetahuan dan Teknologi Komputer, vol. 6, no. 1, 2020, doi: 10.33480/jitk.v6i1.1400.

M. Defriani and I. J. Jaelani, “Recognition of Regional Traditional House in Indonesia Using Convolutional Neural Network (CNN) Method,” Journal of Computer Networks, Architecture and High Performance Computing, vol. 4, no. 2, pp. 104–115, Jul. 2022, doi: 10.47709/cnahpc.v4i2.1562.

A. F. Cobantoro, F. Masykur, and M. Rizqi Rosyadi, “Implementation of Bot Telegram as Broadcasting Media Classification Results of Convolutional Neural Network (CNN) Images of Rice Plant Leaves,” Journal of Computer Networks, Architecture and High Performance Computing, vol. 5, no. 1, pp. 1–9, Jan. 2023, doi: 10.47709/cnahpc.v5i1.1976.

F. Masykur, K. Adi, and O. D. Nurhayati, “Classification of Paddy Leaf Disease Using MobileNet Model,” in 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED), 2022, pp. 1–4. doi: 10.1109/ICCED56140.2022.10010535.

K. A. and O. D. N. F. Masykur, “Classification of Paddy Leaf Disease Using MobileNet Model,” in 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED), 2022. doi: 10.1109/ICCED56140.2022.10010535.

N. A. Prasetyo, “MOBILE WEB APPLICATION PURWOKERTO TRADITIONAL FOOD GAME CLASIFICATION USING MOBILENET V2,” Jurnal Ilmu Pengetahuan dan Teknologi Komputer, vol. 6, no. 1, pp. 33–40, 2020, doi: 10.33480/jitk.v6i1.1418.

M. Sibiya and M. Sumbwanyambe, “A Computational Procedure for the Recognition and Classification of Maize Leaf Diseases Out of Healthy Leaves Using Convolutional Neural Networks,” AgriEngineering, vol. 1, no. 1, pp. 119–131, Mar. 2019, doi: 10.3390/agriengineering1010000.

X. Zhang, Y. Qiao, F. Meng, C. Fan, and M. Zhang, “Identification of maize leaf diseases using improved deep convolutional neural networks,” IEEE Access, vol. 6, pp. 30370–30377, 2018, doi: 10.1109/ACCESS.2018.2844405.

I. A. Sabilla, “Arsitektur Convolutional Neural Network (Cnn) Untuk Klasifikasi Jenis Dan Kesegaran Buah Pada Neraca Buah,” Tesis, no. 201510370311144, pp. 1–119, 2020.

Published
2023-02-28
How to Cite
[1]
A. F. Cobantoro, F. Masykur, and K. Sussolaikah, “ERFORMANCE ANALYSIS OF ALEXNET CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURE WITH IMAGE OBJECTS OF RICE PLANT LEAVES”, jitk, vol. 8, no. 2, pp. 117 - 122, Feb. 2023.
Article Metrics

Abstract viewed = 219 times
PDF downloaded = 188 times