WEB-BASED INFORMATION SYSTEM PREDICTION OF VEHICLE THEFT VULNERABILITY IN JAYAPURA USING REGRESSION ANALYSIS

  • Fegie Yoanti Wattimena Universitas Ottow Geissler Papua, Jayapura
  • Johan Minggus Loly Universitas Ottow Geissler Papua, Jayapura
  • Halomoan Edy Manurung Universitas Ottow Geissler Papua, Jayapura
Keywords: information system, prediction, regression analysis, theft vulnerability, web

Abstract

Vehicle theft in Jayapura Regency is quite high and there is no application to assist the police in making estimates or predictions of the number of theft cases that will occur in the next year. In 2022, cases of theft in Jayapura district will start to increase. to make these predictions the authors designed and built a system that can predict the number of these cases in building this application the authors use the Regression Analysis method this process can help the police predict the number of cases in the coming year. The development method used is SDLC, linear regression analysis and using the PHP programming language, the database uses MYSQL, Sublime Text. This research was conducted because there was no system that could assist the staff of the Resort Police (Polres) of Jayapura Regency. From this research, a system for predicting the level of vulnerability to motorized vehicle theft has been successfully built at the Jayapura District Police with data processed for attendance data using face region, reporting data using barcodes, queue data using counters and digital archive data helping the police store important documents.

Downloads

Download data is not yet available.

References

no. 15, pp. 343–351, Aug. 2023.

M. A. Kaseger, Y. D. Y. Rindengan, and A. S. M. Lumenta, “Aplikasi Pemetaan Daerah Rawan Kriminalitas Di Manadi Berbasis Web,” Jurnal Teknik Informatika, vol. 13, no. 2, Jul. 2018, doi: 10.35793/jti.13.2.2018.22485.

E. D. M, Management Information System, Article, BINUS University, Aug. 2021

A. Fadila, M. Nasir, and S. Safriadi, “Implementasi Sistem Load Balancing Web Server Pada Jaringan public Cloud Computing Menggunakan Least Connection,” Journal of Artificial Intelligence and Software Engineering (J-AISE), vol. 3, no. 2, p. 50, Oct. 2023, doi: 10.30811/jaise.v3i2.4578.

Y. Gao, “The prediction of Apple stock price based on linear regression model and random forest model,” Theoretical and Natural Science, vol. 30, no. 1, pp. 103–109, Jan. 2024, doi: 10.54254/2753-8818/30/20241077.

M. Mukroji, R. Munadi, and S. Syahrial, “Implementasi Metode Simple Additive Weighting Pada Penentuan Peringkat Kerentanan Website (Studi Kasus Website Universitas Negeri Aceh),” Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, vol. 14, no. 1, p. 7, Feb. 2019, doi: 10.30872/jim.v14i1.1431.

Yeasir Rayhan and Tanzima Hashem, “AIST: An Interpretable Attention-based Deep Learning Model for Crime Prediction,” ArXiv, 2021.

N. Almumtazah, N. Azizah, Y. L. Putri, and D. C. R. Novitasari, “Prediksi Jumlah Mahasiswa Baru Menggunakan Metode Regresi Linier Sederhana,” JURNAL ILMIAH MATEMATIKA DAN TERAPAN, vol. 18, no. 1, pp. 31–40, Jun. 2021, doi: 10.22487/2540766X.2021.v18.i1.15465.

F. Soulfitri, “Perancangan Data Flow Diagram Untuk Sistem Informasi Sekolah (Studi Kasus Pada SMP Plus Terpadu),” 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:219886250

Published
2024-02-29
How to Cite
[1]
F. Wattimena, J. Loly, and H. Manurung, “WEB-BASED INFORMATION SYSTEM PREDICTION OF VEHICLE THEFT VULNERABILITY IN JAYAPURA USING REGRESSION ANALYSIS”, jitk, vol. 9, no. 2, pp. 292-300, Feb. 2024.