DEEP LEARNING FOR POLYCYSTIC OVARIAN SYNDROME CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK

  • Odi Nurdiawan STMIK IKMI Cirebon
  • Heliyanti Susana STMIK IKMI Cirebon
  • Ahmad Faqih STMIK IKMI Cirebon
Keywords: convolutional neural network, hormones, polycystic ovarian syndrome, pregnancy, reproduction

Abstract

Polycystic Ovarian Syndrome (PCOS) is the main cause of infertility in women. This condition results in abnormal hormone levels. Women who experience this syndrome will have irregular hormone levels and experience irregular menstrual cycles as well, thereby affecting the reproductive system. Symptoms that arise as a result of the increase in these hormones can be seen from the growth of hair on the legs, weight gain which results in not being ideal, irregular menstruation, unusual acne growth, and oily skin. The problem of Polycystic Ovarian Syndrome can cause disturbances in ovulation and cause infertility in women. Urgency This research requires a classification that has good accuracy in diagnosing early to minimize the rate of pregnancy failure. The aim of the research is to be able to model early detection of Polycystic Ovarian Syndrome with high accuracy so that it can help the health team in detecting Polycystic Ovarian Syndrome or not having Polycystic Ovarian Syndrome. The research stage has 3 stages including the first stage of identifying problems and collecting datasets from Telkom University dataverse in the form of images and literature reviews of various sources. The second stage is Pre Processing of image data, Data Training, modeling design by managing image data and classifying using the Convolutional Neural Network Algorithm deep learning model and testing. The third stage is evaluating the test results and discussing the results of accuracy in determining the status of Normal Polycystic Ovarian Syndrome or PCOS. The results of training and validation on the ovarian xray image dataset using the CNN architecture that has been made, 40 iterations (epochs), and 4 step_per_epochs show an accuracy value of 0.8947 or 89.47% and a loss value of 0.2684.

Downloads

Download data is not yet available.

References

D. A. Devi and F. Kartini, “Women, Midwives and Midwifery : Volume 2, Issue 3, 2022 https://wmmjournal.org Corresponding The Mental Health in Women with Polycystic Ovary Syndrome (PCOS): A Scoping Review,” 2022, doi: 10.36749/wmm.2.3.1-19.2022.

B. Rachana, T. Priyanka, K. N. Sahana, T. R. Supritha, B. D. Parameshachari, and R. Sunitha, “Detection of polycystic ovarian syndrome using follicle recognition technique,” Global Transitions Proceedings, vol. 2, no. 2, pp. 304–308, Nov. 2021, doi: 10.1016/j.gltp.2021.08.010.

T. N. Ravishankar, H. Makarand Jadhav, N. Satheesh Kumar, S. Ambala, and M. Pillai N, “A deep learning approach for ovarian cysts detection and classification (OCD-FCNN) using fuzzy convolutional neural network,” Measurement: Sensors, vol. 27, Jun. 2023, doi: 10.1016/j.measen.2023.100797.

A.-L. Barbotin et al., “Hypothalamic neuroglial plasticity is regulated by anti-Müllerian hormone and disrupted in polycystic ovary syndrome,” 2023. [Online]. Available: www.thelancet.com

G. Ravichandran et al., “Food advanced glycation end products as potential endocrine disruptors: An emerging threat to contemporary and future generation,” Environment International, vol. 123. Elsevier Ltd, pp. 486–500, Feb. 01, 2019. doi: 10.1016/j.envint.2018.12.032.

S. Alam Suha and M. N. Islam, “Exploring the dominant features and data-driven detection of polycystic ovary syndrome through modified stacking ensemble machine learning technique,” Heliyon, vol. 9, no. 3, Mar. 2023, doi: 10.1016/j.heliyon.2023.e14518.

F. Handayani, A. Fauzi, and A. Sihombing, “Penerapan Metode Certainty Factor Dalam Mendiagnosa Penyakit Polycystic Ovary Syndrome,” Jurnal Teknik Informatika Kaputama (JTIK), vol. 6, no. 1, 2022, doi: https://doi.org/10.59697/jtik.v6i1.390.

X. Zhang et al., “Raman spectroscopy of follicular fluid and plasma with machine-learning algorithms for polycystic ovary syndrome screening,” Mol Cell Endocrinol, vol. 523, Mar. 2021, doi: 10.1016/j.mce.2020.111139.

A. Y. Pratama and Y. Pristyanto, “Classification Of Corn Plant Diseases Using Various Convolutional Neural Network,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 9, no. 1, pp. 49–56, Aug. 2023, doi: 10.33480/jitk.v9i1.4258.

Y. A. Suwitono and F. J. Kaunang, “Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Daun Dengan Metode Data Mining SEMMA Menggunakan Keras,” Jurnal Komtika (Komputasi dan Informatika), vol. 6, no. 2, pp. 109–121, Nov. 2022, doi: 10.31603/komtika.v6i2.8054.

P. Azzahra and E. Haerani, “Penerapan dan Implementasi Metode Certainty Factor Dalam Sistem Pakar Diagnosa Awal Gangguan Menstruasi PALM-COEIN,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 2, Sep. 2022, doi: 10.47065/bits.v4i2.1805.

Nurdin et al., “Sms Encryption Application Using 3Des (Triple Data Encryption Standard) Algorithm Based on Android,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Nov. 2019. doi: 10.1088/1742-6596/1363/1/012077.

D. A. Kurnia, D. Sudrajat, N. Rahaningsih, A. R. Rinaldi, and F. A. Pratama, “The selection of candidate of call center operator 112 using analytical hierarchy process method,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Oct. 2019. doi: 10.1088/1742-6596/1360/1/012015.

N. Triadha Pitaloka, “Pcos Disease Classification Using Feature Selection Rfecv And Eda With KNN Algorithm Method,” Jurnal Teknik Informatika (JUTIF), vol. 4, no. 4, pp. 693–701, 2023, doi: 10.52436/1.jutif.2023.4.4.693.

A. Yuliadha and R. H. Setyaningrum, “Psikoneuroimunologi Depresi pada Polycystic Ovary Syndrome (PCOS),” Smart Medical Journal, vol. 5, no. 1, p. 38, Apr. 2022, doi: 10.13057/smj.v5i1.43238.

K. Nisa, B. Putra Dewa, and S. K. Wibisono, “Model Comparison of Random Forest and Logistic Regression Algorithms in PCOS Disease Detection,” KSATRIA : Jurnal Penerapan Sistem Informasi (Komputer&Manajemen), vol. 4, no. 1, pp. 73–79, 2023, doi: https://doi.org/10.30645/kesatria.v4i1.119.

D. A. Kurnia, O. Mohd, F. Abdollah, D. Sudrajat, and Y. A. Wijaya, “Face Recognition Techniques : A Systematic Literature Review (Research Trends, Datasets, And Methods) 1,” J Theor Appl Inf Technol, vol. 15, no. 21, 2021, [Online]. Available: https://www.qsrinternational.com

D. A. Kurnia, A. Setiawan, D. R. Amalia, R. W. Arifin, and D. Setiyadi, “Image Processing Identifacation for Indonesian Cake Cuisine using CNN Classification Technique,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Feb. 2021. doi: 10.1088/1742-6596/1783/1/012047.

D. Sudrajat, R. D. Dana, N. Rahaningsih, A. R. Dikananda, and D. A. Kurnia, “Clustering student’s satisfaction in complex adaptive blended learning with the six value system using the K-means algorithm,” Universal Journal of Educational Research, vol. 7, no. 9, pp. 1990–1995, 2019, doi: 10.13189/ujer.2019.070920.

R. D. Dana, D. Soilihudin, R. H. Silalahi, D. A. Kurnia, and U. Hayati, “Competency test clustering through the application of Principal Component Analysis (PCA) and the K-Means algorithm,” IOP Conf Ser Mater Sci Eng, vol. 1088, no. 1, p. 012038, Feb. 2021, doi: 10.1088/1757-899x/1088/1/012038.

E. Sutisna and L. H. Vonti, “Innovation Development Strategy for Hybrid Learning,” vol. 9, no. 1, pp. 103–114, 2020, doi: https://doi.org/10.25134/erjee.v9i1.3783.

Nurdin et al., “The Implementation of Backtracking Algorithm on Crossword Puzzle Games Based on Android,” J Phys Conf Ser, vol. 1363, no. 1, 2019, doi: 10.1088/1742-6596/1363/1/012075.

R. Novianti, S.Psi, M.Pd, E. Puspitasari, and I. Maria, “Parental Involvement in Children’S Learning Activities During the Covid-19 Pandemic,” JURNAL PAJAR (Pendidikan dan Pengajaran), vol. 5, no. 2, pp. 384–390, 2021, doi: 10.33578/pjr.v5i2.8220.

Published
2024-02-01
How to Cite
[1]
O. Nurdiawan, H. Susana, and A. Faqih, “DEEP LEARNING FOR POLYCYSTIC OVARIAN SYNDROME CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK”, jitk, vol. 9, no. 2, pp. 218-226, Feb. 2024.