EXPERT SYSTEM FOR DISEASE IDENTIFICATION BASED ON HEMATOCHEZIA SYMPTOMS WITH NAÏVE BAYES METHOD

  • Dasril Aldo Institut Teknologi Telkom Purwokerto
  • Alwendi Alwendi Universitas Graha Nusantara Padangsidimpuan
  • Adanti Wido Paramadini Institut Teknologi Telkom Purwokerto
  • Ilwan Syafrinal Universitas Universal
  • Sapta Eka Putra Universitas Tamansiswa Padang
Keywords: expert systems, hematochezia, identification, naïve bayes

Abstract

Hematochezia is a common clinical symptom in various gastrointestinal diseases, requiring accurate diagnosis for effective treatment. This study aims to develop an expert system for the rapid and precise identification of hematochezia-causing diseases. The expert system is designed to assist patients in efficiently recognizing diseases, minimizing treatment failure risks. It employs the Naïve Bayes method, a data calculation approach involving summing combinations and frequencies of each dataset. The expert system methodology begins with training using a dataset comprising hematochezia symptoms and corresponding disease diagnoses. The dataset is input into a database as training data. Subsequently, it undergoes classification and training stages. Symptom data can then be processed using the Naïve Bayes method. The system's end result displays probability values for each disease based on provided symptoms. This analysis relies on specific symptoms selected by the user, such as Rectal Pain, Hematochezia, Constipation, Fatigue, and Abdominal Cramps. It yields a Hemorrhoids diagnosis with a posterior probability of 0.514738. In testing with 35 sample cases, the expert system exhibited a remarkable accuracy rate of 94.29%. This expert system efficiently supports disease diagnosis based on hematochezia symptoms, aiding in swift and accurate identification.

Downloads

Download data is not yet available.

References

J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks,” IEEE Trans Veh Technol, vol. 68, no. 8, pp. 7944–7956, Aug. 2019, doi: 10.1109/TVT.2019.2917890.

H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh, “Learning scheduling algorithms for data processing clusters,” in Proceedings of the ACM Special Interest Group on Data Communication, New York, NY, USA: ACM, Aug. 2019, pp. 270–288. doi: 10.1145/3341302.3342080.

D. S. W. Ting et al., “Artificial intelligence and deep learning in ophthalmology,” British Journal of Ophthalmology, vol. 103, no. 2, pp. 167–175, Feb. 2019, doi: 10.1136/bjophthalmol-2018-313173.

T. S. Rachmawati and M. Agustine, “Keterampilan literasi informasi sebagai upaya pencegahan hoaks mengenai informasi kesehatan di media sosial,” Jurnal Kajian Informasi & Perpustakaan, vol. 9, no. 1, p. 99, Jun. 2021, doi: 10.24198/jkip.v9i1.28650.

K. Ain, H. B. Hidayati, and O. Aulia Nastiti, “Expert System for Stroke Classification Using Naive Bayes Classifier and Certainty Factor as Diagnosis Supporting Device,” J Phys Conf Ser, vol. 1445, no. 1, p. 012026, Jan. 2020, doi: 10.1088/1742-6596/1445/1/012026.

G. Irfansyah, U. Darusallam, and B. Benrahman, “Early Diagnosis Expert System Hepatitis Using Naive Bayes Method: Early Diagnosis Expert System Hepatitis Using Naive Bayes Method”, Mantik, vol. 3, no. 4, pp. 182-187, Feb. 2020.

B. Budianto, I. Fitri, and W. Winarsih, “Expert System for Early Detection of Disease in Corn Plant Using Naive Bayes Method: Expert System for Early Detection of Disease in Corn Plant Using Naive Bayes Method,” J. Mantik, vol. 3, no. 4, pp. 308–317, 2020.

I. Santiko and I. Honggo, “Naive Bayes Algorithm Using Selection of Correlation Based Featured Selections Features for Chronic Diagnosis Disease,” IJIIS: International Journal of Informatics and Information Systems, vol. 2, no. 2, pp. 56–60, Sep. 2019, doi: 10.47738/ijiis.v2i2.14.

S. K. Maliha, R. R. Ema, S. K. Ghosh, H. Ahmed, Md. R. J. Mollick, and T. Islam, “Cancer Disease Prediction Using Naive Bayes,K-Nearest Neighbor and J48 algorithm,” 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–7, Jul. 2019, doi: 10.1109/ICCCNT45670.2019.8944686.

T. Siahaan, Y. Laia, M. Silitonga, C. Pasaribu, F. Sains, and D. Teknologi, “Penerapan Data Mining Classification Untuk Data Pasien Covid-19 Menggunakan Metode Naïve Bayes,” AJurnal TEKINKOM, vol. 6, no. 1, 2023, doi: 10.37600/tekinkom.v6i1.879.

M. T. Hayat Suhendar and Y. Widyani, “Machine Learning Application Development Guidelines Using CRISP-DM and Scrum Concept,” in 2023 IEEE International Conference on Data and Software Engineering (ICoDSE), IEEE, Sep. 2023, pp. 168–173. doi: 10.1109/ICoDSE59534.2023.10291438.

Darmadi Darmadi and Sania Audry Nasution, “Perdarahan Saluran Cerna Atas”, Termometer, vol. 2, no. 1, pp. 193–207, Nov. 2023.

R. Rachman, R. N. Handayani, and I. Artikel, “Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM,” J. Inf., vol. 8, no. 2, pp. 111–122, 2021.

R. Rachman, “Sistem Pakar Deteksi Penyakit Refraksi Mata Dengan Metode Teorema Bayes Berbasis Web,” J. Inform., vol. 7, no. 1, pp. 68–76, 2020.

S. Lestari, Akmaludin, and M. Badrul, “Implementasi Klasifikasi Naive Bayes Untuk Prediksi Kelayakan Pemberian Pinjaman Pada Koperasi Anugerah Bintang Cemerl,” PROSISKO, vol. 7, no. 1, pp. 8–16, Mar. 2020.

Published
2024-02-12
How to Cite
[1]
D. Aldo, A. Alwendi, A. Paramadini, I. Syafrinal, and S. Putra, “EXPERT SYSTEM FOR DISEASE IDENTIFICATION BASED ON HEMATOCHEZIA SYMPTOMS WITH NAÏVE BAYES METHOD”, jitk, vol. 9, no. 2, pp. 247-256, Feb. 2024.