HERBAL LEAF CLASSIFICATION USING DEEP LEARNING MODEL EFFICIENTNETV2B0
Abstract
Science regarding plants has experienced significant progress, especially in the study of medicinal plants. Medicinal plants have been used in medicine and are still an important component in the world of health today. Among the various parts of the plant, the leaves are also one that can be used as medicine. However, not many people can recognize these herbal leaves directly. This is because the herbal leaves at first glance look almost the same, so it is difficult to differentiate them. The aim of this research is to classify herbal leaf images by identifying the structural features of the leaf images. The dataset in this study uses 10 classes of leaf images, namely, starfruit, guava, lime, basil, aloe vera, jackfruit, pandan, papaya, celery, and betel, where each class uses 350 images with a total of 3500 images of data. The EfficientNetV2B0 model was chosen because it has a minimalist architecture but has high effectiveness. Based on the results of research using the EffiecientNetV2B0 model, the accuracy was 99.14% and the loss value was 1.95% using test data.
Downloads
References
T. A. Jiang, “Health benefits of culinary herbs and spices,” J. AOAC Int., vol. 102, no. 2, pp. 395–411, 2019, doi: 10.5740/jaoacint.18-0418.
N. Kaur and V. Devendran, “Plant leaf disease detection using ensemble classification and feature extraction,” Turkish J. Comput. Math. Educ., vol. 12, no. 11, pp. 2339–23352, 2021.
Y. Wang, X. Zhang, G. Ma, X. Du, N. Shaheen, and H. Mao, “Recognition of weeds at asparagus fields using multi-feature fusion and backpropagation neural network,” Int. J. Agric. Biol. Eng., vol. 14, no. 4, pp. 190–198, 2021, doi: 10.25165/j.ijabe.20211404.6135.
M. Fitzgerald, M. Heinrich, and A. Booker, “Medicinal plant analysis: A historical and regional discussion of emergent complex techniques,” Front. Pharmacol., vol. 10, no. January, pp. 1–14, 2019, doi: 10.3389/fphar.2019.01480.
R. I. Borman, R. Napianto, N. Nugroho, D. Pasha, Y. Rahmanto, and Y. E. P. Yudoutomo, “Implementation of PCA and KNN Algorithms in the Classification of Indonesian Medicinal Plants,” in ICOMITEE 2021, 2021, pp. 46–50
S. Bhojanapalli, A. Chakrabarti, D. Glasner, D. Li, T. Unterthiner, and A. Veit, “Understanding Robustness of Transformers for Image Classification,” Proc. IEEE Int. Conf. Comput. Vis., pp. 10211–10221, 2021, doi: 10.1109/ICCV48922.2021.01007.
R. A. Saputra, Suharyanto, S. Wasiyanti, D. F. Saefudin, A. Supriyatna, and A. Wibowo, “Rice Leaf Disease Image Classifications Using KNN Based on GLCM Feature Extraction,” J. Phys. Conf. Ser., vol. 1641, no. 1, 2020, doi: 10.1088/1742-6596/1641/1/012080.
M. Z. Ur Rehman et al., “Classification of citrus plant diseases using deep transfer learning,” Comput. Mater. Contin., vol. 70, no. 1, pp. 1401–1417, 2021, doi: 10.32604/cmc.2022.019046.
M. A. Khan et al., “Multimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologists,” Diagnostics, vol. 10, no. 8, pp. 1–19, 2020, doi: 10.3390/diagnostics10080565.
M. Aggarwal et al., “Federated Transfer Learning for Rice-Leaf Disease Classification across Multiclient Cross-Silo Datasets,” Agronomy, vol. 13, no. 10, 2023, doi: 10.3390/agronomy13102483.
Bella Dwi Mardiana, Wahyu Budi Utomo, Ulfah Nur Oktaviana, Galih Wasis Wicaksono, and Agus Eko Minarno, “Herbal Leaves Classification Based on Leaf Image Using CNN Architecture Model VGG16,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 1, pp. 20–26, Feb. 2023, doi: 10.29207/resti.v7i1.4550.
Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International Conference on Machine Learning, pages 10096–10106. PMLR, 2021
Saragih, R. E., Roza, Y., Purnajaya, A. R., & Kaharuddin, K. (2022). Ambarella fruit ripeness classification based on efficientnet models. Journal of Digital Ecosystem for Natural Sustainability, 2(2), 55-60.
Alia, A., Maree, M., Chraibi, M., Toma, A., & Seyfried, A. (2023). A Cloud-based Deep Learning Framework for Early Detection of Pushing at Crowded Event Entrances. IEEE Access.
Ahmed Alia, Mohammed Maree, and Mohcine Chraibi. A hybrid deep learning and visualization framework for pushing behavior detection in pedestrian dynamics. Sensors, 22(11):4040, 2022.
M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 10691–10700, 2019.
A. H. Nurfauzi, Y. Azhar, and D. R. Chandranegara, “Penerapan Model EfficientNetV2-B0 pada Benchmark IP102 Dataset untuk Menyelesaikan Masalah Klasifikasi Hama Serangga,” J. Repos., vol. 5, no. 3, pp. 805–814, 2023, [Online]. Available: https://repositor.umm.ac.id/index.php/repositor/article/view/1583
I. M. Rahayu, A. Yusuf, M. Ridwan, U. Islam, N. Sunan, and P. Korespondensi, “Prediksi Kesiapan Sekolah Menggunakan Machine Learning School Readiness Prediction Using Machine Learning Based on Combination of Adam and Nesterov Momentum,” vol. 9, no. 6, pp. 1273–1280, 2022, doi: 10.25126/jtiik.202295442.
M. Y. Minarno, Agus Eko; Wicaksono, Galih Wasis; Azhar, Yufis; Hasanuddin, “Indonesian Herb Leaf Dataset 3500,” 2022. doi: 10.17632/s82j8dh4rr.1.
B. Nugroho and E. Y. Puspaningrum, “Kinerja Metode CNN untuk Klasifikasi Pneumonia dengan Variasi Ukuran Citra Input,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 3, p. 533, 2021, doi: 10.25126/jtiik.2021834515.
R. J. Gunawan, B. Irawan, and C. Setianingsih, “Pengenalan Ekspresi Wajah Berbasis Convolutional Neural Network Dengan Model Arsitektur Vgg16 Facial Expression Recognition Based on Convolutional Neural Network With Vgg16 Architecture Model,” e-Proceeding Eng., vol. 8, no. 5, pp. 6442–6454, 2021.
Suharjito, G. N. Elwirehardja, and J. S. Prayoga, “Oil palm fresh fruit bunch ripeness classification on mobile devices using deep learning approaches,” Comput Electron Agric, vol. 188, p. 106359, Sep. 2021, doi: 10.1016/j.compag.2021.106359
C. K. Sunil, C. D. Jaidhar, and N. Patil, “Cardamom Plant Disease Detection Approach Using EfficientNetV2,” IEEE Access, vol. 10, pp. 789–804, 2022, doi: 10.1109/ACCESS.2021.3138920.
R. E. Saragih, D. Gloria, and A. J. Santoso, “Classification of ambarella fruit ripeness based on color feature extraction,” ICIC Express Letters, vol. 15, no. 9, pp. 1013–1020, Sep. 2021, doi: 10.24507/icicel.15.09.1013
Tobiasz, R., Wilczyński, G., Graszka, P., Czechowski, N., & Łuczak, S. (2023). Edge Devices Inference Performance Comparison. arXiv preprint arXiv:2306.12093.
Yao, C., Liu, W., Tang, W., Guo, J., Hu, S., Lu, Y., & Jiang, W. (2021). Evaluating and analyzing the energy efficiency of CNN inference on high‐performance GPU. Concurrency and Computation: Practice and Experience, 33(6), e6064.
Bello, I., Fedus, W., Du, X., Cubuk, E. D., Srinivas, A., Lin, T.-Y., Shlens, J., and Zoph, B. Revisiting resnets: Improved training and scaling strategies. arXiv preprint arXiv:2103.07579, 2021.
Brock, A., De, S., Smith, S. L., and Simonyan, K. Highperformance large-scale image recognition without normalization. arXiv preprint arXiv:2102.06171, 2021.
M. A. Salam, A. T. Azar, M. S. Elgendy, and K. M. Fouad, “The Effect of Different Dimensionality Reduction Techniques on Machine Learning Overfitting Problem,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 4, pp. 641–655, 2021, doi: 10.14569/IJACSA.2021.0120480.
L. Escobar, P. Gallardo, J. González-Anaya, J. L. González, G. Montúfar, and A. H. Morales, “Enumeration of max-pooling responses with generalized permutohedra,” pp. 1–32, 2022, [Online]. Available: http://arxiv.org/abs/2209.14978
Z. Yao, Y. Cao, Y. Lin, Z. Liu, Z. Zhang, and H. Hu, “Leveraging Batch Normalization for Vision Transformers,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2021-Octob, pp. 413–422, 2021, doi: 10.1109/ICCVW54120.2021.00050.
S. De and S. L. Smith, “Batch normalization biases residual blocks towards the identity function in deep networks,” Adv. Neural Inf. Process. Syst., vol. 2020-December, no. NeurIPS, 2020.
Copyright (c) 2024 Rakha Pradana Susilo Putra, Christian Sri Kusuma Aditya, Galih Wasis Wicaksono
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.