DEVELOPMENT A DAILY NUTRITIONAL ADEQUACY BALANCE IDENTIFICATION SYSTEM AS AN EFFORT TO PREVENT MALNUTRITION
Abstract
Malnutrition is a deficiency, excess or imbalance in a person's energy and nutritional intake. Malnutrition can occur when a person has too much or too little food and important nutrients in their body. The Ministry of Health, Indonesia, has campaigned for food consumption that complies with balanced nutrition guidelines under the slogan "Isi Piringku". However, the guidelines regarding this matter are still not properly understood by the public. Even if implemented, the nutritional levels contained in one portion of food consumed cannot yet be measured. Thus, to identify the fulfillment of balanced nutritional, a device is needed to easily detect how much calories is consumed. Therefore, this research aims to develop a system which can identify whether the portion of food consumed meets balanced nutrition or not. It is developed in Django framework, Python programming language, and MySQL database. It has been evaluated using black box testing, white box testing, and system usability scales. The result shows that all system requirements have been run well. Meanwhile, system usability testing result shows that the identification system has been tested with a score of 82 and categorized in Excellent.
Downloads
References
L. M. Donini et al., “What are the risk factors for malnutrition in older-aged institutionalized adults?,” Nutrients, vol. 12, no. 9, pp. 1–9, 2020, doi: 10.3390/nu12092857.
E. Dent, O. R. L. Wright, J. Woo, and E. O. Hoogendijk, “Malnutrition in older adults,” Lancet, vol. 401, no. 10380, pp. 951–966, 2023, doi: 10.1016/S0140-6736(22)02612-5.
R. Jayanti, G. P. Yanuaringsih, N. Olivia, K. Jundapri, S. Ariandini, and R. Munir, “Determinants of Stunting in Indonesian Toddlers,” Indian J. Forensic Med. Toxicol., vol. 15, no. 3, pp. 3954–3959, 2021, doi: 10.37506/ijfmt.v15i3.15914.
R. Ryadinency, S. N, and T. A. Patmawati, “Analysis of Determinant Factors in Stunting Children in Palopo, Indonesia,” J. Wet. Heal., vol. 1, no. 2, pp. 77–82, 2020, doi: 10.48173/jwh.v1i2.39.
P. F. Wiliyanarti, Y. Wulandari, and D. Nasrullah, “Behavior in fulfilling nutritional needs for Indonesian children with stunting: Related culture, family support, and mother’s knowledge,” J. Public health Res., vol. 11, no. 4, 2022, doi: 10.1177/22799036221139938.
Kemenkes, “Buku Saku Hasil Survey Status Gizi Indonesia (SSGI) Tahun 2022,” Kemenkes, pp. 1–7, 2022.
A. Adityaningrum et al., “Faktor Penyebab Stunting Di Indonesia : Analisis Data Sekunder Data Ssgi Tahun 2021 Factors Causing Stunting In Indonesia : 2021 Ssgi Secondary Data,” vol. 3, no. 1, pp. 1–10, 2023, doi: 10.56796/jje.v2i1.21542.
D. Ravika, R. Ratnawati, and S. Reski, “Relationship Between Nutrition Knowledge and Application of the 4 Pillars of Balanced Nutrition in Employees at PT Multi Kusuma Cemerlang, Samarinda City,” Indones. Heal. J., vol. 1, no. 2, pp. 44–54, 2022, doi: 10.58344/ihj.v1i2.21.
E. Stachowska, M. Folwarski, D. Jamioł-Milc, D. Maciejewska, and K. Skonieczna-żydecka, “Nutritional support in coronavirus 2019 disease,” Med., vol. 56, no. 6, pp. 1–14, 2020, doi: 10.3390/medicina56060289.
J. Rani and A. Das, Nutrition science. AG Publishing House (AGPH Books), 2023.
D. Utari, N. Rohmani, and A. Prabasiwi, “Peningkatan Pengetahuan Gizi Seimbang Anak Usia Sekolah dengan Metode Isi Piringku,” Pekodimas J. Pengabdi. Kpd. Masy., vol. 2, no. 1, pp. 19–28, 2022, [Online]. Available: http://openjournal.unpam.ac.id/index.php/Pekomas
I. P. A. E. D. U. Udayana and P. G. S. C. Nugraha, “Prediksi Citra Makanan Menggunakan Convolutional Neural Network Untuk Menentukan Besaran Kalori Makanan,” J. Teknol. Inf. dan Komput., vol. 6, no. 1, pp. 30–38, 2020, doi: 10.36002/jutik.v6i1.1001.
Faisal Candrasyah Hasibuan and Andri Ulus Rahayu, “Identifikasi Persediaan Makanan di dalam Lemari Pendingin Berbasis Raspberry Pi dan Deep Learning,” Electrician, vol. 16, no. 1, pp. 94–101, 2022, doi: 10.23960/elc.v16n1.2231.
I. Parewai, M. As, T. Mine, and M. Koeppen, “Identification and classification of sashimi food using multispectral technology,” in Proceedings of the 2020 2nd Asia Pacific Information Technology Conference, pp. 66–72, 2020, doi: 10.1145/3379310.3379317.
M. Ferone, A. Gowen, S. Fanning, and A. G. M. Scannell, “Microbial detection and identification methods: Bench top assays to omics approaches,” Compr. Rev. Food Sci. Food Saf., vol. 19, no. 6, pp. 3106–3129, 2020, doi: 10.1111/1541-4337.12618.
Y. Zhang et al., “Deep learning in food category recognition,” Inf. Fusion, vol. 98, p. 101859, 2023, doi: 10.1016/j.inffus.2023.101859.
X. Jin, J. Che, and Y. Chen, “Weed identification using deep learning and image processing in vegetable plantation,” IEEE access, vol. 9, pp. 10940–10950, 2021, doi: 10.1109/ACCESS.2021.3050296.
H. K. Aroral, “Waterfall Process Operations in the Fast-paced World: Project Management Exploratory Analysis,” Int. J. Appl. Bus. Manag. Stud., vol. 6, no. 1, p. 2021, 2021.
C. Fagarasan, O. Popa, A. Pisla, and C. Cristea, “Agile, waterfall and iterative approach in information technology projects,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1169, no. 1, p. 012025, 2021, doi: 10.1088/1757-899x/1169/1/012025.
M. K. M. MS, Tabel Komposisi Pangan Indonesia, vol. 01. Jakarta, 2020.
S. Rizal and M. Wali, “The Impact of Using Technology (Technostress) with the Forward Chaining Method as a Decision Support System,” J. Mantik, vol. 4, no. 1, pp. 511–520, 2020, [Online]. Available: http://iocscience.org/ejournal/index.php/mantik/article/view/788/526Romero
K. Pethusamy, A. Gupta, and R. Yadav, “Basal Metabolic Rate (BMR),” in Encyclopedia of animal cognition and behavior, Springer, pp. 620–621, 2022, doi: 10.1007/978-3-319-55065-7_1429
E. Álvarez Carnero, E. Iglesias-Gutiérrez, and J. J. Robert-McComb, “Estimating Energy Requirements,” in The Active Female: Health Issues throughout the Lifespan, Springer, pp. 291–328, 2023, doi: 10.1007/978-3-031-15485-0_18.
P. J. G. Teunissen, Testing theory: an introduction. TU Delft OPEN Publishing, 2024.
K. Watanabe and R. Takagi, “Black box work extraction and composite hypothesis testing,” arXiv preprint arXiv:2407.03400, pp. 3–8, 2024, [Online]. Available: http://arxiv.org/abs/2407.03400
Z. Chen et al., “Exploring Better Black-Box Test Case Prioritization via Log Analysis,” ACM Trans. Softw. Eng. Methodol., vol. 37, no. 4, 2022, doi: 10.1145/3569932.
B. A. Nugroho, A. Izzah, and K. Eliyen, “Mobile Application Development to Solve Vehicle Routing Problems in Marketing or Tour Trip Planning,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 1, pp. 27–33, 2023, doi: 10.29207/resti.v7i1.4552.
P. Vlachogianni and N. Tselios, “Perceived usability evaluation of educational technology using the System Usability Scale (SUS): A systematic review,” J. Res. Technol. Educ., vol. 54, no. 3, pp. 392–409, 2022, doi: 10.1080/15391523.2020.1867938.
Copyright (c) 2024 Abidatul Izzah, Daniel Swanjaya, Kunti Eliyen
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.