PERFORMANCE OF THE YOLOV5 ALGORITHM TO DETECT HUMANS IN THE REAR EXCAVATOR AREA

  • Hanna Naili Syifa' Universitas Negeri Semarang
  • Anan Nugroho Universitas Negeri Semarang
Keywords: blind spot, excavator, human detection system, worker safety, YOLOv5 algorithm

Abstract

Work involving excavators carries a high risk of accidents that can result in fatalities, making Occupational Safety and Health (OSH) critically important. Most excavator accidents are caused by blind spots at the rear, where the operator's limited field of view increases the risk of hitting nearby objects or workers. Despite safety features such as reverse alarms and rear cameras, these technologies only display real-time video without automatically detecting workers, thus still posing a significant risk. This study aims to develop a human detection system for the rear area of excavators using the YOLOv5 algorithm based on image processing. The system's main features include real-time human detection, distance estimation, and audible warnings if a human is detected within a high-risk distance. The system was tested using three video recordings depicting human objects behind the excavator in different scenarios. Despite the limited number of video samples, the human objects provided sufficient complexity to evaluate the system's effectiveness. The test results showed an average accuracy of 80.5% and an F1-score of 87.78%. These findings indicate that the YOLOv5-based detection system performs well in various video conditions and shows potential effectiveness in real operational situations. Consequently, this system is expected to reduce the risk of work accidents with excavators caused by rear blind spots and improve on-site worker safety. This research contributes to the field of occupational safety by integrating image processing algorithms into the development of heavy equipment safety technology, thereby enhancing worker protection.

Downloads

Download data is not yet available.

References

Peraturan Menteri Ketenagakerjaan Republik Indonesia Nomor 8 Tahun 2020 tentang Keselamatan dan Kesehatan Kerja Pesawat Angkat dan Pesawat Angkut. JDIH BPK, 2020.

R. Anas, “Tergilas Excavator, Seorang Karyawan PT IWIP Dilarikan ke Rumah Sakit,” Beritadetik.id, Halmahera Tengah, Jul. 05, 2021.

J. Simanjuntak, “Kuli Panggul Terlindas Alat Berat di Pasar Induk Cibitung, Polisi: Masih Hidup,” SINDONEWS.com, Bekasi, Jul. 07, 2023.

B. Supriadi and P. Kurniati, “Kronologi Pekerja Tewas Terlindas Ekskavator di Tambang Ilegal Jember, 5 Orang Jadi Tersangka,” KOMPAS.com, Jember, Nov. 10, 2023.

S. F. Putra, T. Rakhmadi, and D. Atmoko, “Analisa Penyebab Blind Spot Pada Truck dan Upaya Mengatasinya,” Bhamada Occupational Health Safety Enironment Journal, vol. 1, no. 2, pp. 28–35, 2023.

D.-J. Yeom, H.-S. Yoo, J.-S. Kim, and Y. S. Kim, “Development of a Vision-Based Machine Guidance System for Hydraulic Excavators,” Journal of Asian Architecture and Building Engineering, vol. 22, no. 3, pp. 1564–1581, May 2023, doi: 10.1080/13467581.2022.2090365.

I. Yufahmi, R. Har, and J. Andas, “Analisis Risiko Bahaya dan Upaya Pengendalian Kecelakaan Kerja dengan Metode Hirarki Pengendalian Bahaya pada Area Penambangan Batu Gamping Bukit Karang Putih di PT. Semen Padang, Sumatera Barat,” Jurnal Bina Tambang, vol. 6, no. 4, 2021, doi: 10.24036/bt.v6i4.114089.

M. Vicky, “Sistem Pendeteksi Objek Pada Area Blind Spot Dump Truck Menggunakan Fuzzy Logic Dengan Metode Sugeno,” Universitas Islam Negeri Syarif Hidayatullah Jakarta, 2020.

B. Kim, E.-J. An, S. Kim, K. R. Sri Preethaa, D.-E. Lee, and R. R. Lukacs, “SRGAN-enhanced Unsafe Operation Detection and Classification of Heavy Construction Machinery Using Cascade Learning,” Artif Intell Rev, vol. 57, no. 8, p. 206, Jul. 2024, doi: 10.1007/s10462-024-10839-7.

M. Park, D. Q. Tran, D. Jung, and S. Park, “Wildfire-Detection Method Using DenseNet and CycleGAN Data Augmentation-Based Remote Camera Imagery,” Remote Sens (Basel), vol. 12, no. 22, p. 3715, Nov. 2020, doi: 10.3390/rs12223715.

D. Q. Tran, M. Park, Y. Jeon, J. Bak, and S. Park, “Forest-Fire Response System Using Deep-Learning-Based Approaches With CCTV Images and Weather Data,” IEEE Access, vol. 10, pp. 66061–66071, 2022, doi: 10.1109/ACCESS.2022.3184707.

O. Angah and A. Y. Chen, “Tracking Multiple Construction Workers Trough Deep Learning and The Gradient Based Method with Re-matching Based on Multi-object Tracking Accuracy,” Autom Constr, vol. 119, p. 103308, Nov. 2020, doi: 10.1016/j.autcon.2020.103308.

X. Li, T. Hao, F. Li, L. Zhao, and Z. Wang, “Faster R-CNN-LSTM Construction Site Unsafe Behavior Recognition Model,” Applied Sciences, vol. 13, no. 19, p. 10700, Sep. 2023, doi: 10.3390/app131910700.

H. Son and C. Kim, “Integrated Worker Detection and Tracking for The Safe Operation of Construction Machinery,” Autom Constr, vol. 126, p. 103670, Jun. 2021, doi: 10.1016/j.autcon.2021.103670.

U. Sirisha, S. P. Praveen, P. N. Srinivasu, P. Barsocchi, and A. K. Bhoi, “Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection,” International Journal of Computational Intelligence Systems, vol. 16, no. 1, p. 126, Aug. 2023, doi: 10.1007/s44196-023-00302-w.

S. Srivastava, A. V. Divekar, C. Anilkumar, I. Naik, V. Kulkarni, and V. Pattabiraman, “Comparative Analysis of Deep Learning Image Detection Algorithms,” J Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00434-w.

T. Zeng, J. Wang, B. Cui, X. Wang, D. Wang, and Y. Zhang, “The Equipment Detection and Localization of Large-Scale Construction Jobsite by Far-Field Construction Surveillance Video Based on Improving YOLOv3 and Grey Wolf Optimizer Improving Extreme Learning Machine,” Constr Build Mater, vol. 291, p. 123268, Jul. 2021, doi: 10.1016/j.conbuildmat.2021.123268.

M. Park, D. Q. Tran, J. Bak, and S. Park, “Small and Overlapping Worker Detection at Construction Sites,” Autom Constr, vol. 151, p. 104856, Jul. 2023, doi: 10.1016/j.autcon.2023.104856.

S. Kim, S. H. Hong, H. Kim, M. Lee, and S. Hwang, “Small Object Detection (SOD) System for Comprehensive Construction Site Safety Monitoring,” Autom Constr, vol. 156, p. 105103, Dec. 2023, doi: 10.1016/j.autcon.2023.105103.

N. Rajavinu, B. Swaminathan, A. P. Shameer, D. Jagadish, D. Ghosal, and P. B. Chanda, “A Deep Learning-based Approach on Vehicle Detection, Tracking, and Counting System,” in IEEE 5th International Conference on Inventive Computation Technologies, ICICT 2022 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 831–836. doi: 10.1109/ICICT54344.2022.9850538.

F. Wu, Z. Cai, S. Fan, R. Song, L. Wang, and W. Cai, “Fish Target Detection in Underwater Blurred Scenes Based on Improved YOLOv5,” IEEE Access, vol. 11, pp. 122911–122925, 2023, doi: 10.1109/ACCESS.2023.3328940.

D. A. R. Ellen, P. Kristalina, M. Z. S. Hadi, and A. Patriarso, “Effective Searching of Drowning Victims in the River using Deep Learning Method and Underwater Drone,” in IES 2023 - International Electronics Symposium: Unlocking the Potential of Immersive Technology to Live a Better Life, Proceedings of the IEEE, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 569–574. doi: 10.1109/IES59143.2023.10242589.

Y. Zhou, Z. Wang, G. Xie, J. Liao, W. Huang, and C. Xiao, “A Novel YOLO V5 Framework for Infrared Image Recognition,” in 2022 IEEE 5th International Conference on Automation, Electronics and Electrical Engineering, AUTEEE 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 353–360. doi: 10.1109/AUTEEE56487.2022.9994569.

A. Khalfaoui, A. Badri, and I. El Mourabit, “An Improved YOLOV5 for Real-time Human Detection in Infrared Images,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 32, no. 2, pp. 1078–1085, Nov. 2023, doi: 10.11591/ijeecs.v32.i2.pp1078-1085.

A. Dradrach, J. Konert, and J. Ruminski, “Multimodal Camera for Pedestrian Detection with Deep Learning Models,” in Proceedings of the IEEE International Conference on Industrial Technology, Institute of Electrical and Electronics Engineers Inc., pp. 1-6, 2023. doi: 10.1109/ICIT58465.2023.10143046.

L. He and H. Wei, “CBAM-YOLOv5: A Promising Network Model for Wear Particle Recognition,” Wirel Commun Mob Comput, vol. 2023, pp. 1–15, Jun. 2023, doi: 10.1155/2023/2520933.

A. Hossain, M. T. Islam, and A. F. Almutairi, “A Deep Learning Model to Classify and Detect Brain Abnormalities in Portable Microwave Based Imaging System,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-10309-6.

S. M. Nasution and M. D. Fussy, “Pedestrian Detection System using YOLOv5 for Advanced Driver Assistance System (ADAS),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 3, pp. 715–721, Jun. 2023, doi: 10.29207/resti.v7i3.4884.

M. S. Sruthi, M. J. Poovathingal, V. N. Nandana, S. Lakshmi, M. Samshad, and V. S. Sudeesh, “YOLOv5 based Open-Source UAV for Human Detection during Search and Rescue (SAR),” in IEEE 10th International Conference on Advances in Computing and Communications, ICACC 2021, Institute of Electrical and Electronics Engineers Inc., pp. 1-6, 2021. doi: 10.1109/ICACC-202152719.2021.9708269.

V. K. Paswan and A. Choudhary, “Camera Based Indoor Object Detection and Distance Estimation Framework for Assistive Mobility,” in 2022 IEEE International Conference on Service Operations and Logistics, and Informatics, SOLI 2022, Institute of Electrical and Electronics Engineers Inc., pp. 1-6, 2022. doi: 10.1109/SOLI57430.2022.10294458.

N. Karthik and S. Shenai, “Enabling Object Detection and Distance Calculation in AI based Autonomous Driving System,” in MysuruCon 2022 - 2022 IEEE 2nd Mysore Sub Section International Conference, Institute of Electrical and Electronics Engineers Inc., pp. 1-6, 2022. doi: 10.1109/MysuruCon55714.2022.9972489.

C. Duan and S. Luo, “Design of Pedestrian Detection System based on OpenCV,” in Proceedings of the IEEE - 2022 4th International Conference on Artificial Intelligence and Advanced Manufacturing, AIAM 2022, Institute of Electrical and Electronics Engineers Inc., pp. 256–259, 2022,. doi: 10.1109/AIAM57466.2022.00055.

R. A. Rudiyanto and E. B. Setiawan, “Sentiment Analysis Using Convolutional Neural Network (CNN) and Particle Swarm Optimization on Twitter,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 9, no. 2, pp. 188–195, Feb. 2024, doi: 10.33480/jitk.v9i2.5201.

A. F. Cobantoro, F. Masykur, and K. Sussolaikah, “Performance Analysis of Alexnet Convolutional Neural Network (CNN) Architecture with Image Objects of Rice Plant Leaves,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 8, no. 2, pp. 111–116, Feb. 2023, doi: 10.33480/jitk.v8i2.4060.

D. Chicco and G. Jurman, “The Advantages of the Matthews Correlation Coefficient (MCC) Over F1 score and Accuracy in Binary Classification Evaluation,” BMC Genomics, vol. 21, no. 1, Jan. 2020, doi: 10.1186/s12864-019-6413-7.

Ž. Vujović, “Classification Model Evaluation Metrics,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 6, pp. 599–606, 2021, doi: 10.14569/IJACSA.2021.0120670.

O. Nurdiawan, H. Susana, and A. Faqih, “Deep Learning for Polycystic Ovarian Syndrome Classification Using Convolutional Neural Network,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 9, no. 2, pp. 218–226, Feb. 2024, doi: 10.33480/jitk.v9i2.4575.

S. Varun and V. M. Bhuvanesh, “Real Time Theft Detection Using YOLOv5 Object Detection Model,” in Proceedings of the IEEE - 2023 3rd International Conference on Innovative Sustainable Computational Technologies, CISCT 2023, Institute of Electrical and Electronics Engineers Inc., pp. 1-5, 2023. doi: 10.1109/CISCT57197.2023.10351223.

Published
2024-08-02
How to Cite
[1]
H. Syifa’ and A. Nugroho, “PERFORMANCE OF THE YOLOV5 ALGORITHM TO DETECT HUMANS IN THE REAR EXCAVATOR AREA”, jitk, vol. 10, no. 1, pp. 197 - 207, Aug. 2024.