UNLEASHING THE POWER OF SVM AND KNN: ENHANCED EARLY DETECTION OF HEART DISEASE
Abstract
Heart disease is a fatal illness responsible for approximately 36% of deaths in 2020. Therefore, it is important to pay attention to and better anticipate the risk of heart disease. One technological contribution that can be made is through information related to the risk of heart disease. Classification techniques in data mining can be used to diagnose and identify the risk of heart disease earlier by processing medical data and making predictions. This study compares the effectiveness of two classification algorithms, Support Vector Machine (SVM) and K-Nearest Neighbor (KNN), in predicting the risk of heart disease using a Kaggle dataset consisting of 303 records with 14 attribute columns. The data is divided into 70% for training and 30% for testing. The software used in this study is Orange Data Mining to build the SVM and KNN models. The results show that the SVM accuracy is 85.6%, while KNN achieves 81.1%. Based on the confusion matrix, the SVM algorithm has a lower error rate compared to KNN. In conclusion, the SVM algorithm is superior to KNN in predicting the risk of heart disease. These findings indicate that SVM has a better potential in identifying individuals at high risk of experiencing a heart attack. This research can contribute to the development of a more accurate medical decision support system for early detection of heart disease.
Downloads
References
D. Kurniawan, K. Ibrahim, and A. Prawesti, “Pengalaman Pasien Mengalami Serangan Jantung Pertama Kali yang Dirawat di ruang CICU,” Jurnal Keperawatan Padjadjaran, vol. v3, no. n2, pp. 67–76, Aug. 2015, doi: 10.24198/jkp.v3n2.2.
F. Saktiningtyastuti, L. Dwi, A. Kementerian, K. Politeknik, K. Surakarta, and J. Keperawatan, “Faktor yang Mempengaruhi Serangan Jantung Berulang pada Pasien AMI di Ruang ICVCU RSUD Dr. Moewardi Tahun 2016,” (JKG) JURNAL KEPERAWATAN GLOBAL, vol. 2, no. 1, Jun. 2017, Accessed: Jul. 04, 2024. [Online]. Available: http://jurnal.poltekkes-solo.ac.id/index.php/JKG/article/view/346
M. A. Bianto, K. Kusrini, and S. Sudarmawan, “Perancangan Sistem Klasifikasi Penyakit Jantung Mengunakan Naïve Bayes,” Creative Information Technology Journal, vol. 6, no. 1, p. 75, Apr. 2020, doi: 10.24076/citec.2019v6i1.231.
L. Baransyah, M. S. Rohman, and T. Suharsono, “Faktor-Faktor yang Berpengaruh Terhadap Kejadian Gagal Jantung pada Pasien Infark Miokard Akut di Rumah Sakit Dr. Saiful Anwar Malang,” Majalah Kesehatan , vol. 1, no. 4, pp. 209–213, 2014, Accessed: Jul. 04, 2024. [Online]. Available: https://majalahfk.ub.ac.id/index.php/mkfkub/article/view/42
S. Hospitals, “Pertolongan Pertama Serangan Jantung yang Wajib Diketahui.” Accessed: Jul. 04, 2024. [Online]. Available: https://www.siloamhospitals.com/informasi-siloam/artikel/pertolongan-pertama-serangan-jantung
Dr. F. Rizal Makarim, “Apa itu Serangan Jantung? Gejala, Penyebab, dan Pengobatan | Halodoc.” Accessed: Jul. 04, 2024. [Online]. Available: https://www.halodoc.com/kesehatan/serangan-jantung
A. Yang, W. Zhang, J. Wang, K. Yang, Y. Han, and L. Zhang, “Review on the Application of Machine Learning Algorithms in the Sequence Data Mining of DNA,” Front Bioeng Biotechnol, vol. 8, 2020, doi: 10.3389/fbioe.2020.01032.
J. Nasir, “Penerapan Data Mining Clustering dalam Mengelompokan Buku dengan Betode K-MEANS,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 11, no. 2, pp. 690–703, Oct. 2021, doi: 10.24176/simet.v11i2.5482.
J. J. Pangaribuan, J. Thames, A. E. Widjaja, O. P. Barus, and C. A. Haryani, “Classification of Dry Nut Types Using the Support Vector Machine Method,” 2024 3rd International Conference on Creative Communication and Innovative Technology, ICCIT 2024, 2024, doi: 10.1109/ICCIT62134.2024.10701219.
D. A. Ryfai, N. Hidayat, and E. Santoso, “Klasifikasi Tingkat Resiko Serangan Penyakit Jantung Menggunakan Metode K-Nearest Neighbor,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 10, pp. 4701–4707, Sep. 2022, Accessed: Jul. 04, 2024. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/11662
M. G. Pradana, P. H. Saputro, and D. P. Wijaya, “Komparasi Metode Support Vector Machine dan Naive Bayes dalam Klasifikasi Peluang Penyakit Serangan Jantung,” Indonesian Journal of Business Intelligence (IJUBI), vol. 5, no. 2, p. 87, Dec. 2022, doi: 10.21927/ijubi.v5i2.2659.
I. Optimasi et al., “Implementasi Optimasi Hyperparameter GridSearchCV pada Sistem Prediksi Serangan Jantung Menggunakan SVM,” Teknologi: Jurnal Ilmiah Sistem Informasi, vol. 13, no. 1, pp. 8–15, Jan. 2023, doi: 10.26594/TEKNOLOGI.V13I1.3098.
C. Susanto, T. Taufiq, E. Hasmin, and K. Aryasa, “Sistem Pakar Prediksi Penyakit Diabetes Menggunakan Metode K-NN Berbasis Android,” CogITo Smart Journal, vol. 8, no. 2, pp. 359–370, Dec. 2022, doi: 10.31154/COGITO.V8I2.406.359-370.
M. N. A. H. Sha’abani, N. Fuad, N. Jamal, and M. F. Ismail, “kNN and SVM Classification for EEG: A Review,” in 5th International Conference on Electrical, Control & Computer Engineering, vol. 632, Singapore: Springer, 2020, pp. 555–565. doi: 10.1007/978-981-15-2317-5_47.
B. Valentino Jayadi, T. Handhayani, and M. Dolok Lauro, “Perbandingan kNN dan SVM untuk Klasifikasi Kualitas Udara di Jakarta,” Jurnal Ilmu Komputer dan Sistem Informasi, vol. 11, no. 2, Aug. 2023, doi: 10.24912/jiksi.v11i2.26006.
S. Wiyono, D. S. Wibowo, M. F. Hidayatullah, and D. Dairoh, “Comparative Study of KNN, SVM and Decision Tree Algorithm for Student’s Performance Prediction,” International Journal of Computing Science and Applied Mathematics, vol. 6, no. 2, p. 50, Aug. 2020, doi: 10.12962/j24775401.v6i2.4360.
K. Vijila Rani and S. Joseph Jawhar, “Lung Lesion Classification Scheme Using Optimization Techniques and Hybrid (KNN-SVM) Classifier,” IETE J Res, vol. 68, no. 2, pp. 1485–1499, Mar. 2022, doi: 10.1080/03772063.2019.1654935.
M. J. Al Dujaili, A. Ebrahimi-Moghadam, and A. Fatlawi, “Speech emotion recognition based on SVM and KNN classifications fusion,” International Journal of Electrical and Computer Engineering, vol. 11, no. 2, pp. 1259–1264, Apr. 2021, doi: 10.11591/ijece.v11i2.pp1259-1264.
A. S. Remya Ajai and S. Gopalan, “Analysis of Active Contours Without Edge-Based Segmentation Technique for Brain Tumor Classification Using SVM and KNN Classifiers,” in Advances in Communication Systems and Networks, vol. 656, Singapore: Springer, 2020, pp. 1–10. doi: 10.1007/978-981-15-3992-3_1.
R. Rahman, “Heart Attack Analysis & Prediction Dataset,” 2021. Accessed: Jul. 04, 2024. [Online]. Available: https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-dataset
D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, p. 6, Dec. 2020, doi: 10.1186/s12864-019-6413-7.
A. Nazábal, C. K. I. Williams, G. Colavizza, C. R. Smith, and A. Williams, “Data Engineering for Data Analytics: A Classification of the Issues, and Case Studies,” ArXiv, vol. abs/2004.12929, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:216552958
Copyright (c) 2024 Jefri Junifer Pangaribuan, Ade Maulana, Romindo Romindo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.