COMPARATIVE OF LSTM AND GRU FOR TRAFFIC PREDICTION AT ADIPURA INTERSECTION, BANDAR LAMPUNG
DOI:
https://doi.org/10.33480/jitk.v10i4.6569Keywords:
GRU, intersection, LSTM, roads, traffic predictionAbstract
The Tugu Adipura intersection in Bandar Lampung is a vital traffic hub connecting four major roads. Rapid population growth and increasing vehicle numbers challenge traffic flow and urban quality of life. Despite its importance, there is limited research using predictive models to analyze traffic patterns at complex intersections in mid-sized Indonesian cities. This study addresses that gap by examining traffic growth on four connected roads using deep learning models. Traffic data were collected hourly from June 1, 2021, to July 31, 2023. A comparative analysis of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models was conducted, with SGD and Adam as optimizers. Results show the GRU model with Adam achieved the lowest RMSE (0.23) on road section 1, indicating its superior ability to model short-term fluctuations and non-linear growth in traffic volume. The study offers practical implications for traffic management by highlighting GRU’s capacity to capture seasonal trends and rapid growth, supporting proactive infrastructure planning and congestion mitigation strategies. These findings demonstrate the value of data-driven approaches in enhancing transportation systems in growing urban areas.
Downloads
References
P. Sun, Q. Yu, and K. You, “Intelligent traffic management strategy for traffic congestion in underground loop,” Tunn. Undergr. Sp. Technol., vol. 143, no. March 2023, p. 105509, 2024, doi: 10.1016/j.tust.2023.105509.
M. Sasidharan, M. E. Torbaghan, Y. Fathy, C. D. F. Rogers, N. Metje, and J. Schooling, “Designing user-centric transport strategies for urban road space redistribution,” Commun. Transp. Res., vol. 3, no. June 2023, p. 100109, 2023, doi: 10.1016/j.commtr.2023.100109.
Q. L. Jing, H. Z. Liu, W. Q. Yu, and X. He, “The Impact of Public Transportation on Carbon Emissions—From the Perspective of Energy Consumption,” Sustain., vol. 14, no. 10, pp. 1–18, 2022, doi: 10.3390/su14106248.
R. Tian, C. Wang, J. Hu, and Z. Ma, “Multi-scale spatial-temporal aware transformer for traffic prediction,” Inf. Sci. (Ny)., vol. 648, no. February, p. 119557, 2023, doi: 10.1016/j.ins.2023.119557.
S. Feng et al., “A macro–micro spatio-temporal neural network for traffic prediction,” Transp. Res. Part C Emerg. Technol., vol. 156, no. February, p. 104331, 2023, doi: 10.1016/j.trc.2023.104331.
R. T. Theodora, “Kajian Teknis Terhadap Kelayakan Bundaran di Kota Bandarlampung,” Universitas Lampung, 2022.
T. A. Prasetyo et al., “Evaluating the efficacy of univariate LSTM approach for COVID-19 data prediction in Indonesia,” Indones. J. Electr. Eng. Comput. Sci., vol. 34, no. 2, pp. 1353–1366, 2024, doi: 10.11591/ijeecs.v34.i2.pp1353-1366.
R. Cahuantzi, X. Chen, and S. Güttel, “A Comparison of LSTM and GRU Networks for Learning Symbolic Sequences,” Lect. Notes Networks Syst., vol. 739 LNNS, pp. 771–785, 2023, doi: 10.1007/978-3-031-37963-5_53.
Y. Karyadi, “Prediksi Kualitas Udara Dengan Metoda LSTM, Bidirectional LSTM, dan GRU,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, pp. 671–684, 2022, doi: 10.35957/jatisi.v9i1.1588.
P. Dey et al., “Comparative analysis of recurrent neural networks in stock price prediction for different frequency domains,” Algorithms, vol. 14, no. 8, pp. 1–20, 2021, doi: 10.3390/a14080251.
F. Shahid, A. Zameer, and M. Muneeb, “Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM,” Chaos, Solitons and Fractals, vol. 140, p. 110212, 2020, doi: 10.1016/j.chaos.2020.110212.
A. Nilsen, “Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45,” J. Stat. dan Apl., vol. 6, no. 1, pp. 137–147, 2022, doi: 10.21009/jsa.06113.
K. D. Prasetyo, R. Wijaya, and G. S. Wulandari, “Comparative Analysis of ARIMA and LSTM Models for Predicting Physical Fatigue in Bandung Workers,” J. Media Inform. Budidarma, vol. 8, no. 1, p. 528, 2024, doi: 10.30865/mib.v8i1.7282.
X. Wu, L. Chen, J. Zhao, M. He, and X. Han, “CNN-GRU-Attention Neural Networks for Carbon Emission Prediction of Transportation in Jiangsu Province,” Sustain., vol. 16, no. 19, pp. 1–21, 2024, doi: 10.3390/su16198553.
W. Yulita, M. C. Untoro, M. Praseptiawan, I. F. Ashari, A. Afriansyah, and A. N. Bin Che Pee, “Automatic Scoring Using Term Frequency Inverse Document Frequency Document Frequency and Cosine Similarity,” Sci. J. Informatics, vol. 10, no. 2, pp. 93–104, 2023, doi: 10.15294/sji.v10i2.42209.
I. F. Ashari, E. D. Nugroho, R. Baraku, I. N. Yanda, and R. Liwardana, “Analysis of Elbow , Silhouette , Davies-Bouldin , Calinski-Harabasz , and Rand-Index Evaluation on K-Means Algorithm for Classifying Flood- Affected Areas in Jakarta,” vol. 7, no. 1, pp. 95–103, 2023.
I. F. Ashari, “Analysis Sentiments In Facebook Down Case Using Vader And Naive Bayes Classification Method,” Multitek Indones. J. Ilm., vol. 16, no. 2, pp. 75–89, 2022.
Muttaqin, Yuswardi, A. Maulidinnawati, A. Parewe, I. F. Ashari, and M. Munsarif, Pengantar Sistem Cerdas. 2023.
H. Niu, Z. Zhang, Y. Xiao, M. Luo, and Y. Chen, “A Study of Carbon Emission Efficiency in Chinese Provinces Based on a Three-Stage SBM-Undesirable Model and an LSTM Model,” Int. J. Environ. Res. Public Health, vol. 19, no. 9, 2022, doi: 10.3390/ijerph19095395.
A. M. Nassef, A. G. Olabi, H. Rezk, and M. A. Abdelkareem, “Application of Artificial Intelligence to Predict CO2 Emissions: Critical Step towards Sustainable Environment,” Sustain., vol. 15, no. 9, 2023, doi: 10.3390/su15097648.
W. Hastomo, N. Aini, A. S. B. Karno, and ..., “Machine Learning Methods for Predicting Manure Management Emissions,” J. …, vol. 11, no. 2, pp. 131–139, 2022, [Online]. Available: http://download.garuda.kemdikbud.go.id/article.php?article=2807435&val=24806&title=Metode Pembelajaran Mesin untuk Memprediksi Emisi Manure Management.
R. R. Elhakim, “Prediksi Nilai Tukar Rupiah Ke Dollar As Menggunakan Metode Arima,” MATHunesa J. Ilm. Mat., vol. 8, no. 2, pp. 145–150, 2020, doi: 10.26740/mathunesa.v8n2.p145-150.
Y. Yundari, R. M. Syahfutri, N. M. Huda, S. A. Antaristi, and R. Jonathan, “Pemodelan Autoregresif dengan Error Berkorelasi Waktu untuk Data Covid-19 Kasus Pasien Terkonfirmasi di Kalimantan Barat,” pp. 199–204, 2021, doi: 10.26418/pipt.2021.37.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ilham Firman Ashari, Verlina Agustine, Aidil Afriansyah, Nela Agustin Kurnianingsih, Andre Febrianto, Eko Dwi Nugroho

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.