COMPARISON OF MACHINE LEARNING CLASSIFICATION ALGORITHM ON HOTEL REVIEW SENTIMENT ANALYSIS (CASE STUDY: LUMINOR HOTEL PECENONGAN)

Komparasi Algoritma Klasifikasi Machine Learning Pada Analisis Sentimen Review HOTEL (Studi Kasus: Luminor Hotel Pecenongan)

  • Jaja Miharja STMIK Nusa Mandiri, Jakarta, Indonesia
  • Jordy Lasmana Putra STMIK Nusa Mandiri, Jakarta, Indonesia
  • Nur Hadianto STMIK Nusa Mandiri, Jakarta, Indonesia
Keywords: Sentiment Analysis, Hotel Review, Naive Bayes, K-Nearest Network, Machine Learning

Abstract

Analysis of hotel review sentiment is very helpful to be used as a benchmark or reference for making hotel business decisions today. However, all the review information obtained must be processed first by using an algorithm. The purpose of this study is to compare the Classification Algorithm of Machine Learning to obtain information that has a better level of accuracy in the analysis of hotel reviews. The algorithm that will be used is k-NN (k-Nearest Neighbor) and NB (Naive Bayes). After doing the calculation, the following accuracy level is obtained: k-NN of 60,50% with an AUC value of 0.632 and NB of 85,25% with an AUC value of 0.658. These results can be determined by the right algorithm to assist in making accurate decisions by business people in the analysis of hotel reviews using the NB Algorithm.

Downloads

Download data is not yet available.

References

Basari, A. S. H., Hussin, B., Ananta, I. G. P., & Zeniarja, J. (2013). OpinionMining of Movie Review Using Hybrid Method of Support Vector Machine and Particle Swarm Optimization. Procedia Engineering, 53, 453–462. https://doi.org/10.1016/j.proeng.2013.02.059

Chandani, V., Wahono, R. S., & Purwanto, P. (2015). Komparasi Algoritma Klasifikasi Machine Learning Dan Feature Selection pada Analisis Sentimen Review Film. Journal of Intelligent Systems, 1(1), 56–60. http://www.journal.ilmukomputer.org/index.php?journal=jis&page=article&op=view&path%5B%5D=10

Dey, L., Chakraborty, S., Biswas, A., Bose, B., & Tiwari, S. (2016). Sentiment Analysis of Review Datasets Using Naïve Bayes‘ and K-NN Classifier. International Journal of Information Engineering and Electronic Business, 8(4), 54–62. https://doi.org/10.5815/ijieeb.2016.04.07

Dirsehan, T. (2016). Text Mining in the Hospitality Sector To Extend the Motivation Theory. Conference: International Marketing Trends Conference, January, 1–13. https://www.researchgate.net/publication/298070052_Text_Mining_in_the_Hospitality_Sector_to_Extend_the_Motivation_Theory

Effendy, V. (2015). ANALISIS SENTIMEN BERBAHASA INDONESIA DENGAN PENDEKATAN LEXICON BASED (STUDI KASUS : SOLUSI PENGELOLAAN SAMPAH). Jurnal Ilmiah Komputer Dan Informatika (KOMPUTA), 4(1), 55–60. http://komputa.if.unikom.ac.id/_s/data/jurnal/vol.4-no.1/8.4.1.3.2015-55-60-2089-9033.pdf/pdf/8.4.1.3.2015-55-60-2089-9033.pdf

Kontopoulos, E., Berberidis, C., Dergiades, T., & Bassiliades, N. (2013). Ontology-based sentiment analysis of twitter posts. Expert Systems with Applications, 40(10), 4065–4074. https://doi.org/10.1016/j.eswa.2013.01.001

Miharja, J., Putra, J. L., & Hadianto, N. (2020). Independent Research Final Report.

Muthia, D. A. (2016). Opinion Mining Pada Review Buku Menggunakan Algoritma Naive Bayes. Jurnal Teknik Komputer AMIK BSI, 2(1), 1–8. http://ejournal.bsi.ac.id/ejurnal/index.php/jtk/article/viewFile/357/266

Sipayung, E. M., Maharani, H., & Zefanya, I. (2016). Perancangan Sistem Analisis Sentimen Komentar Pelanggan Menggunakan Metode Naive Bayes Classifier. Jurnal Sistem Informasi, 8(1), 958–965. https://ejournal.unsri.ac.id/index.php/jsi/article/view/3250

Utami, L. D., Rachmi, H., & Nurlaela, D. (2018). Komparasi algoritma klasifikasi pada analisis review hotel. Jurnal Pilar Nusa Mandiri, 14(2), 261–266. https://doi.org/https://doi.org/10.33480/pilar.v14i2.77

Yordanova, S., & Kabakchieva, D. (2017). Sentiment Classification of Hotel Reviews in Social Media with Decision Tree Learning. International Journal of Computer Applications, 158(5), 1–7. https://doi.org/10.5120/ijca2017912806

Zhang, L., & Liu, B. (2017). Sentiment Analysis and Opinion Mining. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning and Data Mining (pp. 1152–1161). Springer. https://doi.org/10.1007/978-1-4899-7687-1

Published
2020-03-15
How to Cite
Miharja, J., Putra, J., & Hadianto, N. (2020). COMPARISON OF MACHINE LEARNING CLASSIFICATION ALGORITHM ON HOTEL REVIEW SENTIMENT ANALYSIS (CASE STUDY: LUMINOR HOTEL PECENONGAN). Jurnal Pilar Nusa Mandiri, 16(1), 59-64. https://doi.org/10.33480/pilar.v16i1.1131