COMPARISON OF DATA MINING CLASSIFICATION METHODS TO DETECT HEART DISEASE

  • Ira Ekanda Putri Universitas Muhammadiyah Malang
  • Dwi Rahmawati Universitas Muhammadiyah Malang
  • Yufis Azhar Universitas Muhammadiyah Malang
Keywords: Heart Disease, Classification, Data Mining

Abstract

Heart disease is a disease that is deadly and must be treated as soon as possible because if it is too late, it has a big risk to one's life. Factors causing the disease of the heart is the use of tobacco, the physical who are less active, and an unhealthy diet. With existing data, the study is to compare the three algorithms, namely: Naive Bayes, Logistic Regression, and Support Vector Machine (SVM) which aims to determine the level of accuracy of the best of the dataset that is used to predict disease heart. This research produces the best accuracy of 87%, which is generated by the Naive Bayes method

Downloads

Download data is not yet available.

References

Adrian, K. (2020). Beberapa Fakta Terkait Penyakit Jantung yang Perlu Diketahui. Retrieved from alodokter.com website: https://www.alodokter.com/beberapa-fakta-terkait-penyakit-jantung-yang-perlu-diketahui

Aeni, W. N., Santosa, S., & Supriyanto, C. (2014). Algoritma Klasifikasi data mining naïve bayes berbasis Particle Swarm Optimization untuk deteksi penyakit jantung. Jurnal Pseudocode, 1(1), 11–14. Retrieved from https://ejournal.unib.ac.id/index.php/pseudocode/article/view/57/

Amin, M. S., Chiam, Y. K., & Varathan, K. D. (2019). Identification of significant features and data mining techniques in predicting heart disease. Telematics and Informatics, 36, 82–93. https://doi.org/10.1016/j.tele.2018.11.007

C.R Khotari. (2004). Research Methodology (Second Rev). New Delhi : New Age International (P) Ltd., ©2004 (OCoLC)62197369.

Dwivedi, A. K. (2018). Performance evaluation of different machine learning techniques for prediction of heart disease. Neural Computing and Applications, 29(10), 685–693. https://doi.org/10.1007/s00521-016-2604-1

Huang, H. (2019). Analisis Regresi Logistik Biner. Retrieved from Globalstat Academic website: https://www.globalstatistik.com/analisis-regresi-logistik-biner/

Hughes, R. (2008). KOMPARASI ALGORITMA MULTI LAYER PERCEPTRON DAN RADIAL BASIS FUNCTION UNTUK DIAGNOSA PENYAKIT JANTUNG. Journal of Chemical Information and Modeling, 53(9), 287. https://doi.org/10.1017/CBO9781107415324.004

Informatikalogi. (2017). Algoritma Naive Bayes. Retrieved from informatikalogi.com website: https://informatikalogi.com/algoritma-naive-bayes/

Janosi, A., Steinbrunn, J., Pfisterer, M., & Detrano, R. (1988). Heart Disease Data Set. Retrieved from UCI Machine Learning Repository website: https://archive.ics.uci.edu/ml/datasets/heart+disease

Jing, L., Ng, M. K., & Huang, J. Z. (2007). An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Transactions on Knowledge and Data Engineering, 19(8), 1026–1041. https://doi.org/10.1109/TKDE.2007.1048

Lestari, M. (2015). Penerapan Algoritma Klasifikasi Nearest Neighbor (K-NN) untuk Mendeteksi Penyakit Jantung. Faktor Exacta, 7(4), 366–371. Retrieved from http://journal.lppmunindra.ac.id/index.php/Faktor_Exacta/article/view/290

Putra, P. D., & Rini, D. P. (2019). Prediksi Penyakit Jantung dengan Algoritma Klasifikasi. Prosiding Annual Research Seminar, 5(1), 95–99. Retrieved from http://www.seminar.ilkom.unsri.ac.id/index.php/ars/article/view/2118

Putri, I. E., Rahmawati, D., Azhar, Y., & Malang, U. M. (2020). Laporan Akhir Penelitian Mandiri: Comparison Of Data Mining Classification Methods To Detect Heart Disease. Malang.

Rohman, A. (2016). KOMPARASI METODE KLASIFIKASI DATA MINING UNTUK PREDIKSI PENYAKIT JANTUNG. Neo Teknika: Jurnal Ilmiah Teknologi, 2(2), 21–28. Retrieved from http://jurnal.unpand.ac.id/index.php/NT/article/view/766

Salsabila, A. (2019). Cross Validation of KNN using R. Retrieved from Medium.com website: https://medium.com/@asalsabila36/cross-validation-of-knn-using-r-84089b21de0f

Samsudiney. (2019). Penjelasan Sederhana tentang Apa Itu SVM? Retrieved from Medium.com website: https://medium.com/@samsudiney/penjelasan-sederhana-tentang-apa-itu-svm-149fec72bd02

Supartini, I. A. M., Sukarsa, I. K. G., & Srinadi, I. G. A. M. (2017). Analisis Diskriminan Pada Klasifikasi Desa Di Kabupaten Tabanan Menggunakan Metode K-Fold Cross Validation. E-Jurnal Matematika, 6(2), 106–115. https://doi.org/10.24843/mtk.2017.v06.i02.p154

Tempola, F., Muhammad, M., & Khairan, A. (2018a). Naive Bayes Classifier for Prediction of Volcanic Status in Indonesia. Proceedings - 2018 5th International Conference on Information Technology, Computer and Electrical Engineering, ICITACEE 2018, 365–369. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICITACEE.2018.8576966

Tempola, F., Muhammad, M., & Khairan, A. (2018b). PERBANDINGAN KLASIFIKASI ANTARA KNN DAN NAIVE BAYES PADA PENENTUAN STATUS GUNUNG BERAPI DENGAN K-FOLD CROSS VALIDATION. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 5(5), 577–584. https://doi.org/10.25126/jtiik.201855983

Published
2020-09-28
How to Cite
Putri, I., Rahmawati, D., & Azhar, Y. (2020). COMPARISON OF DATA MINING CLASSIFICATION METHODS TO DETECT HEART DISEASE. Jurnal Pilar Nusa Mandiri, 16(2), 213-218. https://doi.org/10.33480/pilar.v16i2.1388