Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Heart disease is a disease that is deadly and must be treated as soon as possible because if it is too late, it has a big risk to one's life. Factors causing the disease of the heart is the use of tobacco, the physical who are less active, and an unhealthy diet. With existing data, the study is to compare the three algorithms, namely: Naive Bayes, Logistic Regression, and Support Vector Machine (SVM) which aims to determine the level of accuracy of the best of the dataset that is used to predict disease heart. This research produces the best accuracy of 87%, which is generated by the Naive Bayes method
Adrian, K. (2020). Beberapa Fakta Terkait Penyakit Jantung yang Perlu Diketahui. Retrieved from alodokter.com website: https://www.alodokter.com/beberapa-fakta-terkait-penyakit-jantung-yang-perlu-diketahui
Aeni, W. N., Santosa, S., & Supriyanto, C. (2014). Algoritma Klasifikasi data mining naïve bayes berbasis Particle Swarm Optimization untuk deteksi penyakit jantung. Jurnal Pseudocode, 1(1), 11–14. Retrieved from https://ejournal.unib.ac.id/index.php/pseudocode/article/view/57/
Amin, M. S., Chiam, Y. K., & Varathan, K. D. (2019). Identification of significant features and data mining techniques in predicting heart disease. Telematics and Informatics, 36, 82–93. https://doi.org/10.1016/j.tele.2018.11.007
C.R Khotari. (2004). Research Methodology (Second Rev). New Delhi : New Age International (P) Ltd., ©2004 (OCoLC)62197369.
Dwivedi, A. K. (2018). Performance evaluation of different machine learning techniques for prediction of heart disease. Neural Computing and Applications, 29(10), 685–693. https://doi.org/10.1007/s00521-016-2604-1
Huang, H. (2019). Analisis Regresi Logistik Biner. Retrieved from Globalstat Academic website: https://www.globalstatistik.com/analisis-regresi-logistik-biner/
Hughes, R. (2008). KOMPARASI ALGORITMA MULTI LAYER PERCEPTRON DAN RADIAL BASIS FUNCTION UNTUK DIAGNOSA PENYAKIT JANTUNG. Journal of Chemical Information and Modeling, 53(9), 287. https://doi.org/10.1017/CBO9781107415324.004
Informatikalogi. (2017). Algoritma Naive Bayes. Retrieved from informatikalogi.com website: https://informatikalogi.com/algoritma-naive-bayes/
Janosi, A., Steinbrunn, J., Pfisterer, M., & Detrano, R. (1988). Heart Disease Data Set. Retrieved from UCI Machine Learning Repository website: https://archive.ics.uci.edu/ml/datasets/heart+disease
Jing, L., Ng, M. K., & Huang, J. Z. (2007). An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Transactions on Knowledge and Data Engineering, 19(8), 1026–1041. https://doi.org/10.1109/TKDE.2007.1048
Lestari, M. (2015). Penerapan Algoritma Klasifikasi Nearest Neighbor (K-NN) untuk Mendeteksi Penyakit Jantung. Faktor Exacta, 7(4), 366–371. Retrieved from http://journal.lppmunindra.ac.id/index.php/Faktor_Exacta/article/view/290
Putra, P. D., & Rini, D. P. (2019). Prediksi Penyakit Jantung dengan Algoritma Klasifikasi. Prosiding Annual Research Seminar, 5(1), 95–99. Retrieved from http://www.seminar.ilkom.unsri.ac.id/index.php/ars/article/view/2118
Putri, I. E., Rahmawati, D., Azhar, Y., & Malang, U. M. (2020). Laporan Akhir Penelitian Mandiri: Comparison Of Data Mining Classification Methods To Detect Heart Disease. Malang.
Rohman, A. (2016). KOMPARASI METODE KLASIFIKASI DATA MINING UNTUK PREDIKSI PENYAKIT JANTUNG. Neo Teknika: Jurnal Ilmiah Teknologi, 2(2), 21–28. Retrieved from http://jurnal.unpand.ac.id/index.php/NT/article/view/766
Salsabila, A. (2019). Cross Validation of KNN using R. Retrieved from Medium.com website: https://medium.com/@asalsabila36/cross-validation-of-knn-using-r-84089b21de0f
Samsudiney. (2019). Penjelasan Sederhana tentang Apa Itu SVM? Retrieved from Medium.com website: https://medium.com/@samsudiney/penjelasan-sederhana-tentang-apa-itu-svm-149fec72bd02
Supartini, I. A. M., Sukarsa, I. K. G., & Srinadi, I. G. A. M. (2017). Analisis Diskriminan Pada Klasifikasi Desa Di Kabupaten Tabanan Menggunakan Metode K-Fold Cross Validation. E-Jurnal Matematika, 6(2), 106–115. https://doi.org/10.24843/mtk.2017.v06.i02.p154
Tempola, F., Muhammad, M., & Khairan, A. (2018a). Naive Bayes Classifier for Prediction of Volcanic Status in Indonesia. Proceedings - 2018 5th International Conference on Information Technology, Computer and Electrical Engineering, ICITACEE 2018, 365–369. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICITACEE.2018.8576966
Tempola, F., Muhammad, M., & Khairan, A. (2018b). PERBANDINGAN KLASIFIKASI ANTARA KNN DAN NAIVE BAYES PADA PENENTUAN STATUS GUNUNG BERAPI DENGAN K-FOLD CROSS VALIDATION. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 5(5), 577–584. https://doi.org/10.25126/jtiik.201855983
Copyright (c) 2020 Ira Ekanda Putri, Dwi Rahmawati, Yufis Azhar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.