Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Rice is a food source for carbohydrates that are most consumed in Indonesia, because of this the production is higher compared to other food crops. There are several superior rice varieties planted by the farmers, one of them is Ciherang. This type is widely planted by farmers because has high selling as economic value and can be used as premium rice. The existence of several types of rice that had a high sales value makes some person was deceitfulness by mix the rice with premium quality with bad quality. Many people do not know the problem of distinguishing types of rice from one to another that has the same shape. Classification techniques using the backpropagation neural network algorithm and image processing are used to identify one of the most preferred types of rice, Ciherang. The network architecture model on the backpropagation algorithm is very influential on the value of accuracy. In determining the best network’s architectures, 4 times attempted where network architecture with 5 nodes in the input layer, 8 nodes in the hidden layer, and 1 node in output layer produce the highest accuracy of 82,66%.
Aprilia, D., Jaman, J. H., & Adam, R. I. (2020). Laporan Akhir Penelitian: Penerapan Algoritma Backpropagation Neural Network pada Identifikasi Jenis Beras Ciherang Berdasarkan Data Citra Digital. Karawang.
Asadi, F., Putra, F. M., Sakinatunnisa, M. I., Syafria, F., Oktafalisa, & Marzuki, I. (2017). Implementation of Backpropagation Neural Network and Blood Cells Imagery Extraction for Acute Leukemia Classification. 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), (November), 106–110. Bandung: IEEE. https://doi.org/10.1109/ICICI-BME.2017.8537755
Cinar, I., & Koklu, M. (2019). Classification of Rice Varieties Using Artificial Intelligence Methods. International Journal of Intelligen Systems and Applications in Engineering, 7(3), 188–194. https://doi.org/10.18201/ijisae.2019355381
Fayyazi, S., & Monadjemi, S. A. (2017). Identification and Classification of Three Iranian Rice Varieties in Mixed Bulks Using Image Processing and MLP Neural Network. International Journal of Food Engineering. https://doi.org/10.1515/ijfe-2016-0121
Handoko, D. D. (2017). Seputar Mutu Beras Kemasan dan Pencampuran Beras. Retrieved from nusakini.com website: https://www.nusakini.com/news/seputar-mutu-beras-kemasan-dan-pencampuran-beras
Hidayah, A. N. (2019). Penerapan Jaringan Syaraf Tiruan Backpropagation Klasifikasi Penyakit ISPA ( Studi Kasus : Rumah Sakit Universitas Riau ). Universitas Islam Negeri Sultan Syarif Kasim Riau.
Hossin, M., & Sulaiman, M. N. (2015). A Review on Evaluation Metrics for Data Classification Evaluations. International Journal of Data Mining & Knowledge Management Process (IJDKP), 5(2), 1–11.
Isnawati, I., & Fitriyani. (2019). Distribusi Perdagangan Komoditas Beras Indonesia Tahun 2019 (M. Karmiati & R. Suerlianto, Eds.). Jakarta: BPS RI/ BPS-Statistics Indonesia.
MC KAB INDRAMAYU. (2019, May). InfoPublik - Ciherang Masih Jadi Jenis Padi Unggulan di Indramayu. Retrieved from InfoPublik website: http://infopublik.id/kategori/nusantara/348958/ciherang-masih-jadi-jenis-padi-unggulan-di-indramayu
Mohammed, M. A., Al-khateeb, B., Rashid, A. N., Ibrahim, D. A., Ghani, M. K. A., & Mostafa, S. A. (2018). Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images. Computers and Electrical Engineering, 70(August), 871–882. https://doi.org/10.1016/j.compeleceng.2018.01.033
Prabowo, T. (2018). Implementasi Jaringan Syaraf Tiruan Backpropagation untuk Klasifikasi Serangan pada LOG Firewall (Studi Kasus : Pusat Teknologi Informasi dan Pangkalan Data (PTIPD) UIN SUSKA RIAU).
Putra, L. S. A., Isnanto, R. R., Triwiyatno, A., & Gunawan, V. A. (2018). Identification of Heart Disease With Iridology Using Backpropagation Neural Network. 2018 2nd Borneo International Conference on Applied Mathematics and Engineering (BICAME), 138–142. Balikpapan: IEEE. https://doi.org/10.1109/BICAME45512.2018.1570509882
Ricardo, D., & Gasim, G. (2019). Perbandingan Akurasi Pengenalan Jenis Beras dengan Algoritma Proagasi Balik pda Beberapa Resolusi Kamera. RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(2), 131–140. https://doi.org/10.29207/resti.v3i2.894
Sari, V. P. (2019). Identifikasi Betta Fish Berdasarkan Ekstraksi Bentuk Menggunakan Parameter Eccentricity dan Metric (Universitas Lampung). Universitas Lampung. Retrieved from http://digilib.unila.ac.id/58696/
Sari, Y., & Pramunendar, R. A. (2017). Classification Quality of Tobacco Leaves as Cigarette Raw Material Based on Artificial Neural Networks. International Journal of Computer Trends and Technology (IJCTT), 50(3), 147–150. https://doi.org/10.14445/22312803/IJCTT-V50P126
Singh, K. R., & Chaudhury, S. (2016). Efficient technique for rice grain classification using back-propagation neural network and wavelet decomposition. The Institution of Engineering and Technology (IET), 1–8. https://doi.org/10.1049/iet-cvi.2015.0486
Srimulyani, W., & Musdholifah, A. (2019). Identification of Rice Variety Using Geometric Features and Neural Network. IJCSS (Indonesian Journal of Computing and Cybernetics Systems), 13(3), 301–312. https://doi.org/https://doi.org/10.22146/ijccs.48203
Syaban, K., & Harjoko, A. (2016). Klasifikasi Varietas Cabai Berdasarkan Morfologi Daun Menggunakan Backpropagation Neural Network. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 10(2), 161–172. https://doi.org/10.22146/ijccs.16628
Copyright (c) 2020 Dita Aprilia, Jajam Haerul Jaman, Riza Ibnu Adam
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.