Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Increased student success and low student failure rates are a reflection of good quality in the field of education. Awareness of the importance of education determines the quality in utilizing existing resources, including human resources, facilities and infrastructure as well as technological resources. The large number of students in school as well as the variety of different abilities and academic qualifications for each student, makes it difficult for the school to facilitate the search for outstanding student selection based on academic scores. Therefore it is necessary to do the data to be processed into information and knowledge as a grouping of outstanding students from assignment scores, test scores, and student practice scores as variables that will be supporting values in the selection of outstanding students. Data mining can be proposed as an approach that can be used to predict the selection of outstanding students. In this study, the application of the kmeans clustering algorithm is proposed to predict the selection of outstanding students based on academic scores.
Dewantara, K. H. (1961). Karya Ki Hajar Dewantara bab I: Pendidikan. Jakarta: Majelis Luhur Taman Siswa.
Dodi, N. (2016). Pentingnya Guru Untuk Mempelajari Psikologi Pendidikan. Nusantara ( Jurnal Ilmu Pengetahuan Sosial ) Volume 1 Desember 2016, 1, 59–63.
Irawan, Y. (2017). Sistem Pendukung Keputusan Untuk Penilaian Prestasi Belajar Siswa pada Sekolah Dasar Negeri 167 Pekanbaru dengan Metode AHP. Jurnal Ilmu Komputer, 6, 3–8.
Isnaini, M., Kusuma, D., & Noviani, L. (2015). PENGARUH KOMPETENSI DOSEN DAN FASILITAS BELAJAR TERHADAP KEPUASAN MAHASISWA PENDIDIKAN EKONOMI FKIP UNS. BISE: Jurnal Pendidikan Bisnis Dan Ekonomi, 1(2), 1–20. https://doi.org/10.20961/BISE.V1I2.17968
Metisen, B. M., & Sari, H. L. (2015). Analisis clustering menggunakan metode K-Means dalam pengelompokkan penjualan produk pada Swalayan Fadhila. Jurnal Media Infotama, 11(2), 110–118.
Ningrum, E. (2009). PENGEMBANGAN SOURCE DAYA MANUSIA BIDANG PENDIDIKAN. Jurnal Geografi GEA, 9(1), 1–9. Retrieved from https://ejournal.upi.edu/index.php/gea/article/view/1681/
Nirmala, I. D., & Atika, P. D. (2020). Laporan Akhir Hibah Penelitian: Penerapan Algoritma K-Means Sebagai Metode Clustering Untuk Pemilihan Siswa Berprestasi Berdasarkan Nilai Akademik. Jakarta.
Ratih, S., & Sonalitha Elta. (2018). Aplikasi k-means clustering untuk pengelompokkan siswa ke dalam kelas berdasarkan nilai akademis, jenis kelamin, perilaku dan nama siswa di sma negeri 1 srengat. Seminar Nasional Sistem Informasi, 1179–1187.
Rezky, M. P., Sutarto, J., Prihatin, T., Yulianto, A., & Haidar, I. (2020). Generasi Milenial yang Siap Menghadapi Era Revolusi Digital (Society 5.0 dan Revolusi Industri 4.0) di Bidang Pendidikan Melalui Pengembangan Source Daya Manusia. Seminar Nasional Pascasarjana (Prosnampas) 2019, 1117–1125. Semarang: Universitas Negeri Semarang. Retrieved from https://proceeding.unnes.ac.id/index.php/snpasca/article/view/424
Sibuea, M. L., & Safta, A. (2017). Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustring. Jurteksi, 4(1), 85–92. https://doi.org/10.33330/jurteksi.v4i1.28
Copyright (c) 2020 Indah Dwijayanthi Nirmala, Prima Dina Atika
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.