Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Diabetes mellitus is included in the top 3 most deadly diseases in Indonesia. Based on WHO data in 2013, diabetes contributed 6.5% to the death of the Indonesian population. Diabetes is a chronic disease characterized by high blood sugar (glucose) levels that exceed normal limits. In the health sector, historical medical data can be processed to extract new information and can be used for decision-making processes such as disease prediction. This study aims to classify predictions for early detection of diabetes in order to obtain accurate results for decision making. The data used are historical data on hospital disease patients in Sylhet, Bangladesh in the form of a diabetes dataset from the UCI Repository. The algorithms used are Decision Tree, Naive Bayes, and Neural Network. Then the three methods are compared using the Rapidminer tools. The measurement results are 90% accuracy with Decision Tree, 80% with Naive Bayes, and 70% with Neural Network. So that the best algorithm is obtained, namely the Decision Tree for predicting early detection of diabetes. Rule in the form of a decision tree generated from the Decision Tree is used for input or ideas for decision making in the health sector for diabetes.
Amalia, H. (2018). Perbandingan Metode Data Mining SVM Dan NN Untuk Klasifikasi Penyakit Ginjal Kronis. Jurnal PILAR Nusa Mandiri, 14(1), 1–6. Retrieved from http://ejournal.nusamandiri.ac.id/index.php/pilar/article/view/80
Annisa, R. (2019). Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Penderita Penyakit Jantung. Jurnal Teknik Informatika Kaputama (JTIK), 3(1), 22–28. Retrieved from https://jurnal.kaputama.ac.id/index.php/JTIK/article/view/141/156
Apriliah, W., Kurniawan, I., Baydhowi, M., & Haryati, T. (2021). Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest. Sistemasi: Jurnal Sistem Informasi, 10(1), 163–171. https://doi.org/10.32520/stmsi.v10i1.1129
Argina, A. M. (2020). Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes. Indonesian Journal of Data and Science, 1(2), 29–33. https://doi.org/10.33096/ijodas.v1i2.11
Buani, D. C. P. (2018). Prediksi Penyakit Hepatitis Menggunakan Algoritma Naive Bayes Dengan Seleksi Fitur Algoritma Genetika. Jurnal Evolusi, 6(2), 1–5. Retrieved from ejournal.bsi.ac.id
Efendi, M. S., & Wibawa, H. A. (2018). Prediksi Penyakit Diabetes Menggunakan Algoritma ID3 dengan Pemilihan Atribut Terbaik (Diabetes Prediction using ID3 Algorithm with Best Attribute Selection). JUITA, VI(1), 29–35.
Handayani, P., Nurlelah, E., Raharjo, M., & Ramdani, P. M. (2019). Prediksi Penyakit Liver Dengan Menggunakan Metode Decision Tree dan Neural Network. CESS (Journal of Computer Engineering System and Science), 4(1), 55–59. https://doi.org/10.24114/cess.v4i1.11528
Handayanna, F., Rinawati, Arisawati, E., & Dewi, L. S. (2017). Prediksi Penyakit Diabetes Menggunakan Naive Bayes dengan Optimasi Parameter Menggunakan Algoritma Genetika. KNiST (Konferensi Nasional Ilmu Sosial & Teknologi), 71–76.
Nugraha, F. S., Shidiq, M. J., & Rahayu, S. (2019). Analisis Algoritma Klasifikasi Neural Network Untuk Diagnosis Penyakit Kanker Payudara. Jurnal Pilar Nusa Mandiri, 15(2), 149–156. https://doi.org/10.33480/pilar.v15i2.601
Nurdiana, N., & Algifari, A. (2020). Studi Komparasi Algoritma ID3 dan Algoritma Naive Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus. 6(2), 18–23.
Prahartiwi, L. I., & Dari, W. (2021). Komparasi Algoritma Naive Bayes, Decision Tree dan Support Vector Machine Untuk prediksi Penyakit Kanker Payudara. 7(1), 51–54. https://doi.org/10.31294/jtk.v4i2
Putri, S. U., Irawan, E., & Rizky, F. (2021). Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5. KESATRIA Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 2(1), 39–46.
Septiani, W. D. (2020). Optimasi Algoritma C4.5 Menggunakan Algoritma Genetika Untuk Prediksi Penyakit Hepatitis. Inti Nusa Mandiri, 15(1), 59–64.
Septiani, W. D., & Marlina. (2021). Laporan Akhir Penelitian. Jakarta.
Sunge, A. S. (2018). Prediksi Kompetensi Karyawan Menggunakan Algoritma C4.5 (Studi Kasus : PT Hankook Tire Indonesia). Seminar Nasional Teknologi Informasi Dan Komunikasi 2018 (SENTIKA 2018), 15–22.
Copyright (c) 2021 Wisti Dwi Septiani, Marlina Marlina
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.