• Relita Buaton (1*) Program Studi Doktor Ilmu Komputer Universitas Sumatera Utara
  • Deny Jollyta (2) Teknik Informatika Sekolah Tinggi Ilmu Komputer Pelita Indonesia
  • Herman Mawengkang (3) Matematika Universitas Sumatera Utara
  • Muhammad Zarlis (4) Ilmu Komputer Universitas Sumatera Utara
  • Syahril Effendi (5) Ilmu Komputer Universitas Sumatera Utara

  • (*) Corresponding Author
Keywords: Association Rule, Support, Confidence, Correlation


One of the problems in higher education is the mistake of prospective students in majors selection. This is caused by not paying attention to the suitability of the major in the original school with the chosen major in higher education so that it impacts not only non optimal processing and learning outcomes, such as the low GPA, but also on social life, such as increasing unemployment. The selection of the right major is very important and to help prospective students in choosing it requires an online system that can be accessed by everyone and select original school majors to see conformity with majors in higher education. This system uses association rules and parameters of support and confidence in data mining. The purpose of this research is to determine the correlation between majors in the original school, majors in higher education and the achievement of the GPA through the use of support and confidence parameters that process the knowledge base in the form of an alumni database on the online system created. Training or testing was conducted on 10,254 data in the database and produced new information and knowledge that between the majors of the original school, the choice of majors in higher education and GPA had a strong correlation with the value of confidence reaching 100%.


Download data is not yet available.


Agrawal, R., Imielinski, T., & Swami, A. (1993). Sigmod93Assoc. In Mining Association Rules between Sets of tems in Large Database (pp. 1–10).

Ahuja, R., Garg, A. G., Jain, D., & Sachdeva, D. (2018). Predicting B.Tech student admission decisions by data mining algorithms. International Journal of Engineering & Technology, 7(1–3), 90–94.

Ait-Mlouk, A., Gharnati, F., & Agouti, T. (2017). An improved approach for association rule mining using a multi-criteria decision support system: a case study in road safety. European Transport Research Review, 9(40), 1–13.

Al Syahdan, S., & Sindar, A. (2018). Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 1(2), 56–63.

Anitha, G., A. Karthika, R., Bindu, G., & V. Sriramakrishnan, G. (2018). Modified classic a priori algorithm for association rule mining. International Journal of Engineering & Technology, 7(2.21), 414–416.

Astudillo, C., Bardeen, M., & Cerpa, N. (2014). Editorial: Data mining in electronic commerce confidence - Support vs. Confidence. Journal of Theoretical and Applied Electronic Commerce Research, 9(1), 1–7.

Buaton, R., Jollyta, D., Mawengkang, H., Zarlis, M., & Effendi, S. (2019). Laporan Akhir Penelitian Mandiri. Kota Medan.

Chauhan, A., & Cerpa, N. (2001). A Comparison of Procurement Models for B2B Electronic Commerce. In Optima (pp. 1–14).

Correa Bahnsen, A., Stojanovic, A., Aouada, D., & Ottersten, B. (2013). Cost sensitive credit card fraud detection using bayes minimum risk. Proceedings - 2013 12th International Conference on Machine Learning and Applications, ICMLA 2013, 12, 333–338.

Ding, S., Shi, Z., Chen, K., & Taher Azar, A. (2015). Mathematical Modeling and Analysis of Soft Computing. Mathematical Problems in Engineering (Vol. 2015).

Harahap, R. F. (2014). Duh, 87% Mahasiswa Indonesia Salah Jurusan! Okexone.Com, p. News Kampus. Retrieved from

Istrat, V., & Lalić, N. (2017). Association Rules as a Decision Making Model in the Textile Industry. Fibres and Textiles in Eastern Europe, 25(4), 8–14.

Jafarzadeh, H., Rahmati Torkashvand, R., Asgari, C., & Amiry, A. (2015). Provide a new approach for mining fuzzy association rules using Apriori algorithm. Indian Journal of Science and Technology, 8(S7), 127–134.

Kamsu-Foguem, B., Rigal, F., & Mauget, F. (2013). Mining association rules for the quality improvement of the production process. Expert Systems with Applications, 40(4), 1034–1045.

Kwon, J. H., Lee, S. B., Park, J., & Kim, E. J. (2017). Association Rule-based Predictive Model for Machine Failure in Industrial Internet of Things. In Journal of Physics: Conference Series (Vol. 892, pp. 1–8).

Orriols-Puig, A., Martínez-López, F. J., Casillas, J., & Lee, N. (2013). A soft-computing-based method for the automatic discovery of fuzzy rules in databases: Uses for academic research and management support in marketing. Journal of Business Research, 66(2013), 1332–1337.

Pulakkazhy, S., & Balan, R. V. S. (2013). Data mining in banking and its applications- A review. Journal of Computer Science, 9(10), 1252–1259.

Sánchez, D., Vila, M. A., Cerda, L., & Serrano, J. M. (2009). Association rules applied to credit card fraud detection. Expert Systems with Applications, 36, 3630–3640.

Santhosh, S., & Francis, M. (2015). Clinic + - A Clinical Decision Support System Using Association Rule Mining. International Journal of Innovative Research in Computer and Communication Engineering, 3(4), 3585–3590.

Tseng, V. S., Shie, B. E., Wu, C.-W., & Yu, P. S. (2013). Efficient Algorithms for Mining Top-K High Utility Itemsets from Transactional Database. IEEE Transactions on Knowledge and Data Engineering, 28(8), 1772–1787.

Yabing, J. (2013). Research of an Improved Apriori Algorithm in Data Mining Association Rules. International Journal of Computer and Communication Engineering, 2(1), 25–27.
How to Cite
Buaton, R., Jollyta, D., Mawengkang, H., Zarlis, M., & Effendi, S. (2019). PARAMETER ASOSIASI UNTUK MENENTUKAN KORELASI JURUSAN DAN INDEKS PRESTASI KUMULATIF. Jurnal Pilar Nusa Mandiri, 15(1), 111-118.
Article Metrics

Abstract viewed = 574 times
PDF downloaded = 515 times