SENTIMENT ANALYSIS ON THE TWITTER PSSI PERFORMANCE USING TEXT MINING WITH THE NAÏVE BAYES ALGORITHM

  • Fajrullah Maulana Universitas Nusa Mandiri
  • M Arief Abdullah Universitas Nusa Mandiri
  • Juwita Sari Universitas Nusa Mandiri
  • Dimas Zappar Siddik Universitas Nusa Mandiri
  • Matius Agustinus Universitas Nusa Mandiri
  • Dedi Dwi Saputra Universitas Nusa Mandiri
Keywords: Sentiment Analysis, PSSI, Twitter, Naïve Bayes Classifier

Abstract

Social media has developed rapidly today, so social media is no longer just a place to interact and socialize but also to express opinions or criticize a particular party or institution. After the incident at the Malang Kanjuruhan stadium in October 2022, many netizens criticized the performance of PSSI as Indonesia's number one organization that oversees football competitions in Indonesia. For this reason, sentiment analysis was carried out on the official PSSI account on Twitter to assess the performance of PSSI by grouping them as Satisfied and Unsatisfied using the Naïve Bayes Classifier. Sentiment analysis took tweets from the official PSSI account and as many as 1000 comments to be used as a dataset. Then preprocessing is carried out in the GATA Framework using the Annotation Removal, Remove Hashtag, Transformation Remove URL, Regexp, Indonesian Steaming, and Indonesian Stopword Removal methods. The results obtained were 82.82% for accuracy, 78.69% for precision, 90.33% for recall, and 0.866 for AUC. With these results, the value obtained is at a good classification level.

Downloads

Download data is not yet available.

References

Fadilah, E. (2019). Implementasi Metode Profile Matching Terhadap Sistem Pendukung Keputusan Penerimaan Dana Zakat pada Badan Amil Zakat Pertamina (BAZMA). Matics, 10(2), 39. https://doi.org/10.18860/mat.v10i2.5745

Gunawan, B., Pratiwi, H. S., & Pratama, E. E. (2018). Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 4(2), 113. https://doi.org/10.26418/jp.v4i2.27526

Hermawan, D., Akhsanal, M., Wahyudi, Z., Ariyanto, A., & Dwi, D. (2022). Optimasi Analisis Sentimen Pada Twitter Olshop Tokopedia Menggunakan Textmining Dengan Algoritma Naïve Bayes & Adaboost. 6(September), 821–828.

Imandasari, T., Irawan, E., Windarto, A. P., & Wanto, A. (2019). Algoritma Naive Bayes Dalam Klasifikasi Lokasi Pembangunan Sumber Air. Prosiding Seminar Nasional Riset Information Science (SENARIS), 1(September), 750. https://doi.org/10.30645/senaris.v1i0.81

Lasepa, R., Riyadi, S., Ramadhan, S., & Saputra, D. D. (2021). Analisis Sentimen Terhadap Perspektif Warganet Atas Tragedi Kanjuruhan Malang di Twitter Menggunakan Naïve Bayes Classifier. 8(1), 1–8.

Mutawalli, L., Zaen, M. T. A., & Bagye, W. (2019). KLASIFIKASI TEKS SOSIAL MEDIA TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE (Studi Kasus Penusukan Wiranto). Jurnal Informatika Dan Rekayasa Elektronik, 2(2), 43. https://doi.org/10.36595/jire.v2i2.117

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 5(2), 697–711.

Prastyawan, E. B. (2018). Stereotip dan Konflik Antar Suporter Sepakbola Persibat dan Persip Pekalongan. Persepsi : Communication Journal, 1(1), 1–14. https://doi.org/10.30596/persepsi.v1i1.2440

Qadrini L, Sepperwali A, & Aina A. (2021). Decision Treedan Adaboostpada Klasifikasi Penerima Program Bantuan Sosial. Decision Tree Dan Adaboost Pada Klasifikasi Penerima Program Bantuan Sosial, 2(7), 1959–1966.

Sari, F. V., & Wibowo, A. (2019). Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi. Jurnal SIMETRIS, 10(2), 681–686.

Suryani, P. S. M., Linawati, L., & Saputra, K. O. (2019). Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia. Majalah Ilmiah Teknologi Elektro, 18(1), 145. https://doi.org/10.24843/mite.2019.v18i01.p22

Syarifuddinn, M. (2020). Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn. INTI Nusa Mandiri, 15(1), 23–28. https://doi.org/10.33480/inti.v15i1.1347

Utomo, D. P., & Mesran, M. (2020). Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung. Jurnal Media Informatika Budidarma, 4(2), 437. https://doi.org/10.30865/mib.v4i2.2080

Yulita, W., Dwi Nugroho, E., Habib Algifari, M., Studi Teknik Informatika, P., Teknologi Sumatera, I., Terusan Ryacudu, J., Huwi, W., Agung, J., & Selatan, L. (2021). Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes Classifier. Jdmsi, 2(2), 1–9.

Zulhidayat, M. (2018). Kewenangan Dan Peran Pemerintah Dalam Penyelenggaraan Komepetisi Sepak Bola Di Indonesia (the Authority and Role of Government in the Organizing of Football Competition in Indonesia). Jurnal Hukum Replik, 6(2), 222. https://doi.org/10.31000/jhr.v6i2.1446

Published
2022-09-13
How to Cite
Maulana, F., Abdullah, M., Sari, J., Siddik, D., Agustinus, M., & Saputra, D. (2022). SENTIMENT ANALYSIS ON THE TWITTER PSSI PERFORMANCE USING TEXT MINING WITH THE NAÏVE BAYES ALGORITHM. Jurnal Pilar Nusa Mandiri, 18(2), 211-216. https://doi.org/10.33480/pilar.v18i2.3938