IDENTIFICATION OF POTATO LEAF DISEASES USING ARTIFICIAL NEURAL NETWORKS WITH EXTREME LEARNING MACHINE ALGORITHM

  • Moh. Erkamim (1*) Universitas Tunas Pembangunan
  • Ri Sabti Septarini (2) Universitas Muhammadiyah Tangerang
  • Mursalim Tonggiroh (3) Universitas Yapis Papua
  • Siti Nurhayati (4) Universitas Yapis Papua

  • (*) Corresponding Author
Keywords: artificial neural networks, ELM, extreme learning machine, GLCM, potato leaf disease

Abstract

Potato plants have an important role in providing a source of carbohydrates for society. However, potato production is often threatened by various plant diseases, such as leaf disease, which can cause a decrease in yields. Identification of diseases on potato leaves is currently mostly done by farmers manually, so it is not always efficient and accurate. So the aim of this research is to identify diseases on potato leaves with artificial neural networks using the ELM (Extreme Learning Machine) approach and the GLCM (Gray Level Co-Occurrence Matrix) method for feature extraction. The GLCM approach functions to obtain texture features on objects by measuring how often certain pairs of pixel intensities appear together at various distances and directions in the image. Meanwhile, the ELM algorithm is used for image identification by adopting a one-time training method without iteration, which involves randomly determining weights and biases in hidden layers, thus allowing training to be carried out quickly and efficiently. Evaluation of the model by looking for the level of accuracy produces a value of 84.667%. The results show that the model developed is capable of accurate identification.

Downloads

Download data is not yet available.

References

Ahmad, I., Rahmanto, Y., Borman, R. I., Rossi, F., Jusman, Y., & Alexander, A. D. (2022). Identification of Pineapple Disease Based on Image Using Neural Network Self-Organizing Map (SOM) Model. International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS).

Andrian, R., Maharani, D., Muhammad, M. A., & Junaidi, A. (2020). Butterfly Identification Using Gray Level Co-Occurrence Matrix (GLCM) Extraction Feature and K-Nearest Neighbor (KNN) Classification. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 6(1), 11–21. https://doi.org/10.26594/register.v6i1.1602

Ansah, M. A., Kasih, P., & Dara, M. A. D. W. (2022). Identifikasi Penyakit Daun Anggur Berdasarkan Fitur Warna Dan Tekstur Dengan Metode Backpropagation Berbasis Android. Seminar Nasional Inovasi Teknologi, 265–271.

Ariesdianto, R. H., Fitri, Z. E., Madjid, A., & Imron, A. M. N. (2021). Identifikasi Penyakit Daun Jeruk Siam Menggunakan K-Nearest Neighbor. Jurnal Ilmu Komputer Dan Informatika (JIKI), 1(2), 133–140.

Armavillia, K. E. (2023). Produksi Kentang Di Indonesia Naik Secara Bertahap. GoodStats. https://data.goodstats.id/statistic/elmaarmavillia/produksi-kentang-di-indonesia-naik-secara-bertahap-P6HbQ

Baek, S.-H., Park, K.-H., Jeon, J.-S., & Kwak, T.-Y. (2022). Using the CIELAB Color System for Soil Color Identification Based on Digital Image Processing. Journal of The Korean Geotechnical Society, 38(5), 61–71.

Borman, R. I., Kurniawan, D. E., Styawati, Ahmad, I., & Alita, D. (2023). Classification of maturity levels of palm fresh fruit bunches using the linear discriminant analysis algorithm. AIP Conference Proceedings, 2665(1), 30023. https://doi.org/10.1063/5.0126513

Harjanti, T. W. (2022). Implementation of Inference Engine with Certainty Factor on Potential Diagnosis of Brain Tumor Disease. PILAR Nusa Mandiri: Journal of Computing and Information System, 18(1), 25–30. https://doi.org/10.33480/pilar.v18i1.xxxx

Herdiansah, A., Borman, R. I., Nurnaningsih, D., Sinlae, A. A. J., & Al Hakim, R. R. (2022). Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk. JURIKOM (Jurnal Riset Komputer), 9(2), 388–395. https://doi.org/10.30865/jurikom.v9i1.3846

Javidan, S. M., Banakar, A., Vakilian, K. A., & Ampatzidis, Y. (2023). Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agricultural Technology, 3, 1–14. https://doi.org/10.1016/j.atech.2022.100081

Malounas, I., Lentzou, D., Xanthopoulos, G., & Fountas, S. (2024). Testing the suitability of automated machine learning, hyperspectral imaging and CIELAB color space for proximal in situ fertilization level classification. Smart Agricultural Technology, 8, 100437. https://doi.org/https://doi.org/10.1016/j.atech.2024.100437

Mayatopani, H., Borman, R. I., Atmojo, W. T., & Arisantoso, A. (2021). Classification of Vehicle Types Using Backpropagation Neural Networks with Metric and Ecentricity Parameters. Jurnal Riset Informatika, 4(1), 65–70. https://doi.org/10.34288/jri.v4i1.293

Miao, Y., Li, S., Wang, L., Li, H., Qiu, R., & Zhang, M. (2023). A single plant segmentation method of maize point cloud based on Euclidean clustering and K-means clustering. Computers and Electronics in Agriculture, 210, 107951. https://doi.org/https://doi.org/10.1016/j.compag.2023.107951

Muraina, I. O. (2022). Ideal Dataset Splitting Ratios in Machine Learning Algorithms: General Concerns for Data Scientists and Data Analysts. 7th International Mardin Artuklu Scientific Researches Conference, 496–505.

Prastyo, B. A., Istiadi, I., & Rahman, A. Y. (2023). Klasifikasi Penyakit Daun Padi Menggunakan Support Vector Machine Melalui Tekstur Dan Warna Daun Dengan HSV Dan Gabor Filter. The 6th Conference on Innovation and Application of Science and Technology (CIASTECH), 567–575.

Rao, V. C. S., Venkratamulu, S., & Sammulal, P. (2021). Digital Image Processing and Applications. Horizon Books (A Division of Ignited Minds Edutech P Ltd).

Wahid, R. R., Anggraeni, F. T., & Nugroho, B. (2021). Brain Tumor Classification with Hybrid Algorithm Convolutional Neural Network-Extreme Learning Machine. International Journal of Computer, Network Security and Information System, 3(1), 29–33. https://doi.org/https://doi.org/10.33005/ijconsist.v3i1.53

Wanti, E. P., Pariyandani, A., Zulkarnain, S., & Idrus, S. (2021). Utilization of SVM Method and GLCM Feature Extraction in Classifying Fish Images with Formalin. Scientific Journal of Informatics, 8(1), 168–175. https://doi.org/10.15294/sji.v8i1.26806

Wu, M.-T. (2022). Confusion matrix and minimum cross-entropy metrics based motion recognition system in the classroom. Scientific Reports, 12(1), 3095. https://doi.org/10.1038/s41598-022-07137-z

Zabala-Blanco, D., Mora, M., Hernandez-Garcıa, R., & Barrientos, R. J. (2020). The Extreme Learning Machine Algorithm for Classifying Fingerprints. 39th International Conference of the Chilean Computer Science Society (SCCC). https://doi.org/https://doi.org/10.1109/SCCC51225.2020.9281232

Published
2024-03-29
How to Cite
Erkamim, M., Septarini, R. S., Tonggiroh, M., & Nurhayati, S. (2024). IDENTIFICATION OF POTATO LEAF DISEASES USING ARTIFICIAL NEURAL NETWORKS WITH EXTREME LEARNING MACHINE ALGORITHM. Jurnal Pilar Nusa Mandiri, 20(1), 60-68. https://doi.org/10.33480/pilar.v20i1.5307
Article Metrics

Abstract viewed = 110 times
PDF downloaded = 67 times