Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Climate change and increasing global temperatures have increased the frequency and intensity of forest fires, making fire risk evaluation increasingly important. This study aims to improve the accuracy of predicting forest fuel drought conditions (Drought Code) by using the XGBoost algorithm optimized with RandomizedSearchCV. The research methods include collecting data related to forest fires, preprocessing data to ensure quality and consistency, and using RandomizedSearchCV for XGBoost hyperparameter optimization. The results showed that the optimized XGBoost model resulted in a decrease in Mean Squared Error (MSE) and an increase in R-squared value compared to the default model. The optimized model achieved an MSE of 0.0210 and R2 of 0.9820 on the test data, indicating significantly improved prediction accuracy for forest fuel drought conditions. These findings emphasize the importance of hyperparameter optimization in improving the accuracy of predictive models for forest fire risk assessment.
Alamsyah, N., Budiman, Danestiara, V. R., Akbar, I., & Setiana, E. (2023). Optimizing Computational Efficiency in Feature Selection for Machine Learning Models: A Study Crime Detection Based on Criminal Data. 2023 Eighth International Conference on Informatics and Computing (ICIC), 1–6. https://doi.org/10.1109/ICIC60109.2023.10382057
Alamsyah, N., Saparudin, & Kurniati, A. P. (2023). A Novel Airfare Dataset To Predict Travel Agent Profits Based On Dynamic Pricing. 2023 11th International Conference on Information and Communication Technology (ICoICT), 575–581. https://doi.org/10.1109/ICoICT58202.2023.10262694
Alamsyah, N., Yoga, T. P., & Budiman, B. (2024). IMPROVING TRAFFIC DENSITY PREDICTION USING LSTM WITH PARAMETRIC ReLU (PReLU) ACTIVATION. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 9(2), 154–160. https://doi.org/10.33480/jitk.v9i2.5046
Albahra, S., Gorbett, T., Robertson, S., D’Aleo, G., Kumar, S. V. S., Ockunzzi, S., Lallo, D., Hu, B., & Rashidi, H. H. (2023). Artificial intelligence and machine learning overview in pathology & laboratory medicine: A general review of data preprocessing and basic supervised concepts. Seminars in Diagnostic Pathology, 40(2), 71–87. https://doi.org/10.1053/j.semdp.2023.02.002
Ali, Y. A., Awwad, E. M., Al-Razgan, M., & Maarouf, A. (2023). Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational Complexity Yasser. Processes, 11(2), 1–21. https:// doi.org/10.3390/pr11020349
Amal Asselman, M. K., & Aammou, S. (2023). Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interactive Learning Environments, 31(6), 3360–3379. https://doi.org/10.1080/10494820.2021.1928235
Baseer, K. K., Nas, S. B. A., Dharani, S., Sravani, S., Yashwanth, P., & Jyothirmai, P. (2023). Medical Diagnosis of Human Heart Diseases with and without Hyperparameter tuning through Machine Learning. 2023 7th International Conference on Computing Methodologies and Communication (ICCMC), 1–8. https://doi.org/10.1109/ICCMC56507.2023.10084156
Carta, F., Zidda, C., Putzu, M., Loru, D., Anedda, M., & Giusto, D. (2023). Advancements in Forest Fire Prevention: A Comprehensive Survey. Sensors, 23(14), 1–26. https://doi.org/10.3390/s23146635
Ehsani, F., & Hosseini, M. (2024). Customer purchase prediction in electronic markets from clickstream data using the Oracle meta-classifier. Operational Research, 24(1), 11. https://doi.org/10.1007/s12351-023-00813-6
Erpurini, W., Putrada, A. G., Alamsyah, N., Pane, S. F., & Nurkamal Fauzan, M. (2023). Confirmatory Factor Analysis for The Impact of Students’ Social Medial on University Digital Marketing. 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), 615–620. https://doi.org/10.1109/ICCoSITE57641.2023.10127744
Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., & Shao, L. (2023). Normalization Techniques in Training DNNs: Methodology, Analysis and Application. IEEE Transactions on Pattern Analysis & Machine Intelligence, 45(08), 10173–10196. https://doi.org/10.1109/TPAMI.2023.3250241
Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., & Le Quéré, C. (2022). Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 60(3), e2020RG000726. https://doi.org/10.1029/2020RG000726
Korená Hillayová, M., Holécy, J., Korísteková, K., Bakšová, M., Ostrihoň, M., & Škvarenina, J. (2023). Ongoing climatic change increases the risk of wildfires. Case study: Carpathian spruce forests. Journal of Environmental Management, 337, 117620. https://doi.org/10.1016/j.jenvman.2023.117620
Putrada, A. G., Alamsyah, N., Pane, S. F., & Fauzan, M. N. (2022). XGBoost for IDS on WSN Cyber Attacks with Imbalanced Data. 2022 International Symposium on Electronics and Smart Devices (ISESD), 1–7. https://doi.org/10.1109/ISESD56103.2022.9980630
Qin, Y., Ju, W., Wu, H., Luo, X., & Zhang, M. (2024). Learning Graph ODE for Continuous-Time Sequential Recommendation. IEEE Transactions on Knowledge and Data Engineering, 36(7), 3224–3236. https://doi.org/10.1109/TKDE.2024.3349397
Sun, X., Li, N., Chen, D., Chen, G., Sun, C., Shi, M., Gao, X., Wang, K., & Hezam, I. M. (2024). A Forest Fire Prediction Model Based on Cellular Automata and Machine Learning. IEEE Access, 12, 55389–55403. https://doi.org/10.1109/ACCESS.2024.3389035
THYGE PEDERSEN, U. (2023). Forest Fires [dataset]. https://www.kaggle.com/datasets/ulrikthygepedersen/forest-fires
Todorovic, M., Stanisic, N., Zivkovic, M., Bacanin, N., Simic, V., & Tirkolaee, E. B. (2023). Improving audit opinion prediction accuracy using metaheuristics-tuned XGBoost algorithm with interpretable results through SHAP value analysis. Applied Soft Computing, 149, 110955. https://doi.org/10.1016/j.asoc.2023.110955
Wu, L., Li, X., Yuan, J., & Wang, S. (2023). Real-time prediction of tunnel face conditions using XGBoost Random Forest algorithm. Frontiers of Structural and Civil Engineering, 17(12), 1777–1795. https://doi.org/10.1007/s11709-023-0044-4
Zhao, Y., Zhang, W., & Liu, X. (2024). Grid search with a weighted error function: Hyper-parameter optimization for financial time series forecasting. Applied Soft Computing, 154, 111362. https://doi.org/10.1016/j.asoc.2024.111362
Copyright (c) 2024 Nur Alamsyah, Budiman Budiman, Titan Parama Yoga, R Yadi Rakhman Alamsyah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.