XGBOOST HYPERPARAMETER OPTIMIZATION USING RANDOMIZEDSEARCHCV FOR ACCURATE FOREST FIRE DROUGHT CONDITION PREDICTION

  • Nur Alamsyah Universitas Informatika Dan Bisnis Indonesia
  • Budiman Budiman Universitas Informatika Dan Bisnis Indonesia
  • Titan Parama Yoga Universitas Informatika Dan Bisnis Indonesia
  • R Yadi Rakhman Alamsyah Universitas Informatika Dan Bisnis Indonesia
Keywords: forest fire prediction, hyperparameter optimization, XGBoost

Abstract

Climate change and increasing global temperatures have increased the frequency and intensity of forest fires, making fire risk evaluation increasingly important. This study aims to improve the accuracy of predicting forest fuel drought conditions (Drought Code) by using the XGBoost algorithm optimized with RandomizedSearchCV. The research methods include collecting data related to forest fires, preprocessing data to ensure quality and consistency, and using RandomizedSearchCV for XGBoost hyperparameter optimization. The results showed that the optimized XGBoost model resulted in a decrease in Mean Squared Error (MSE) and an increase in R-squared value compared to the default model. The optimized model achieved an MSE of 0.0210 and R2 of 0.9820 on the test data, indicating significantly improved prediction accuracy for forest fuel drought conditions. These findings emphasize the importance of hyperparameter optimization in improving the accuracy of predictive models for forest fire risk assessment.

Downloads

Download data is not yet available.

References

Alamsyah, N., Budiman, Danestiara, V. R., Akbar, I., & Setiana, E. (2023). Optimizing Computational Efficiency in Feature Selection for Machine Learning Models: A Study Crime Detection Based on Criminal Data. 2023 Eighth International Conference on Informatics and Computing (ICIC), 1–6. https://doi.org/10.1109/ICIC60109.2023.10382057

Alamsyah, N., Saparudin, & Kurniati, A. P. (2023). A Novel Airfare Dataset To Predict Travel Agent Profits Based On Dynamic Pricing. 2023 11th International Conference on Information and Communication Technology (ICoICT), 575–581. https://doi.org/10.1109/ICoICT58202.2023.10262694

Alamsyah, N., Yoga, T. P., & Budiman, B. (2024). IMPROVING TRAFFIC DENSITY PREDICTION USING LSTM WITH PARAMETRIC ReLU (PReLU) ACTIVATION. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 9(2), 154–160. https://doi.org/10.33480/jitk.v9i2.5046

Albahra, S., Gorbett, T., Robertson, S., D’Aleo, G., Kumar, S. V. S., Ockunzzi, S., Lallo, D., Hu, B., & Rashidi, H. H. (2023). Artificial intelligence and machine learning overview in pathology & laboratory medicine: A general review of data preprocessing and basic supervised concepts. Seminars in Diagnostic Pathology, 40(2), 71–87. https://doi.org/10.1053/j.semdp.2023.02.002

Ali, Y. A., Awwad, E. M., Al-Razgan, M., & Maarouf, A. (2023). Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational Complexity Yasser. Processes, 11(2), 1–21. https:// doi.org/10.3390/pr11020349

Amal Asselman, M. K., & Aammou, S. (2023). Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interactive Learning Environments, 31(6), 3360–3379. https://doi.org/10.1080/10494820.2021.1928235

Baseer, K. K., Nas, S. B. A., Dharani, S., Sravani, S., Yashwanth, P., & Jyothirmai, P. (2023). Medical Diagnosis of Human Heart Diseases with and without Hyperparameter tuning through Machine Learning. 2023 7th International Conference on Computing Methodologies and Communication (ICCMC), 1–8. https://doi.org/10.1109/ICCMC56507.2023.10084156

Carta, F., Zidda, C., Putzu, M., Loru, D., Anedda, M., & Giusto, D. (2023). Advancements in Forest Fire Prevention: A Comprehensive Survey. Sensors, 23(14), 1–26. https://doi.org/10.3390/s23146635

Ehsani, F., & Hosseini, M. (2024). Customer purchase prediction in electronic markets from clickstream data using the Oracle meta-classifier. Operational Research, 24(1), 11. https://doi.org/10.1007/s12351-023-00813-6

Erpurini, W., Putrada, A. G., Alamsyah, N., Pane, S. F., & Nurkamal Fauzan, M. (2023). Confirmatory Factor Analysis for The Impact of Students’ Social Medial on University Digital Marketing. 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), 615–620. https://doi.org/10.1109/ICCoSITE57641.2023.10127744

Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., & Shao, L. (2023). Normalization Techniques in Training DNNs: Methodology, Analysis and Application. IEEE Transactions on Pattern Analysis & Machine Intelligence, 45(08), 10173–10196. https://doi.org/10.1109/TPAMI.2023.3250241

Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., & Le Quéré, C. (2022). Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 60(3), e2020RG000726. https://doi.org/10.1029/2020RG000726

Korená Hillayová, M., Holécy, J., Korísteková, K., Bakšová, M., Ostrihoň, M., & Škvarenina, J. (2023). Ongoing climatic change increases the risk of wildfires. Case study: Carpathian spruce forests. Journal of Environmental Management, 337, 117620. https://doi.org/10.1016/j.jenvman.2023.117620

Putrada, A. G., Alamsyah, N., Pane, S. F., & Fauzan, M. N. (2022). XGBoost for IDS on WSN Cyber Attacks with Imbalanced Data. 2022 International Symposium on Electronics and Smart Devices (ISESD), 1–7. https://doi.org/10.1109/ISESD56103.2022.9980630

Qin, Y., Ju, W., Wu, H., Luo, X., & Zhang, M. (2024). Learning Graph ODE for Continuous-Time Sequential Recommendation. IEEE Transactions on Knowledge and Data Engineering, 36(7), 3224–3236. https://doi.org/10.1109/TKDE.2024.3349397

Sun, X., Li, N., Chen, D., Chen, G., Sun, C., Shi, M., Gao, X., Wang, K., & Hezam, I. M. (2024). A Forest Fire Prediction Model Based on Cellular Automata and Machine Learning. IEEE Access, 12, 55389–55403. https://doi.org/10.1109/ACCESS.2024.3389035

THYGE PEDERSEN, U. (2023). Forest Fires [dataset]. https://www.kaggle.com/datasets/ulrikthygepedersen/forest-fires

Todorovic, M., Stanisic, N., Zivkovic, M., Bacanin, N., Simic, V., & Tirkolaee, E. B. (2023). Improving audit opinion prediction accuracy using metaheuristics-tuned XGBoost algorithm with interpretable results through SHAP value analysis. Applied Soft Computing, 149, 110955. https://doi.org/10.1016/j.asoc.2023.110955

Wu, L., Li, X., Yuan, J., & Wang, S. (2023). Real-time prediction of tunnel face conditions using XGBoost Random Forest algorithm. Frontiers of Structural and Civil Engineering, 17(12), 1777–1795. https://doi.org/10.1007/s11709-023-0044-4

Zhao, Y., Zhang, W., & Liu, X. (2024). Grid search with a weighted error function: Hyper-parameter optimization for financial time series forecasting. Applied Soft Computing, 154, 111362. https://doi.org/10.1016/j.asoc.2024.111362

Published
2024-09-23
How to Cite
Alamsyah, N., Budiman, B., Yoga, T., & Alamsyah, R. Y. (2024). XGBOOST HYPERPARAMETER OPTIMIZATION USING RANDOMIZEDSEARCHCV FOR ACCURATE FOREST FIRE DROUGHT CONDITION PREDICTION. Jurnal Pilar Nusa Mandiri, 20(2), 103-110. https://doi.org/10.33480/pilar.v20i2.5569