COMPARISON OF MACHINE LEARNING ALGORITHMS FOR SENTIMENT ANALYSIS OF DIGITAL IDENTITY APPLICATION USERS

Authors

  • Muhammad Naufal Maulana Abrari Universitas Amikom Yogyakarta
  • Ferian Fauzi Abdulloh Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.33480/pilar.v20i2.5736

Keywords:

digital identity application, k-nearest neighbors, naïve bayes, sentiment analysis, support vector machine

Abstract

In the rapidly evolving digital era, the Population Identity Application (IKD) plays a crucial role in streamlining civil administration processes in Indonesia, allowing easier and faster access to population services. This study aims to explore the application of machine learning algorithms in analyzing user responses to the IKD application. Three popular algorithms: Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), and Naïve Bayes were chosen to classify sentiment from 1301 user reviews on the Google Play Store into positive and negative categories. After performing data preprocessing such as tokenization and stemming, hyperparameter optimization was conducted using GridSearchCV to enhance classification accuracy. The research results indicate that the SVM algorithm, optimized with hyperparameters, including the use of the rbf kernel and a parameter value of C = 1, achieved the highest accuracy of 85.60%, making it the most effective method for sentiment classification of the IKD application. These findings provide valuable insights for the government and developers in refining the features and performance of IKD, contributing to the efficiency and security of digital administration in Indonesia. Furthermore, this study opens opportunities for further development that is more responsive to user needs and expectations in the future.

Downloads

Download data is not yet available.

References

Balit, M. N. B., Utomo, F. S. (2024). Sentiment Analysis of pegipegi.com Review on Google Play Store with Naïve Bayes. Sistemasi: Jurnal Sistem Informasi, 13.3, 1044–1053. https://doi.org/10.32520/stmsi.v13i3.3913

Cahyono, N., & Dewi Setiyawati. (2023). Analisis Sentimen Pengguna Sosial Media Twitter Terhadap Perokok Di Indonesia. Indonesian Journal of Computer Science, 12(1), 262–272. https://doi.org/10.33022/ijcs.v12i1.3154

Ditami, G. R., Ripanti, E. F., & Sujaini, H. (2022). Implementasi Support Vector Machine untuk Analisis Sentimen Terhadap Pengaruh Program Promosi Event Belanja pada Marketplace. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 8(3), 508. https://doi.org/10.26418/jp.v8i3.56478

Doloksaribu, H. P., & Yusran Timur Samuel. (2022). Komparasi Algoritma Data Mining Untuk Analisis Sentimen Aplikasi Pedulilindungi. Jurnal Teknologi Informasi: Jurnal Keilmuan Dan Aplikasi Bidang Teknik Informatika, 16(1), 1–11. https://doi.org/10.47111/jti.v16i1.3747

Dukcapiladmin. (2023). Identitas Kependudukan Digital (IKD) / Digital IDo Title. Retrieved July 1, 2024, from https://dukcapil.madiunkab.go.id/identitas-kependudukan-digital-digital-id/

Fan, Y., Arora, C., & Treude, C. (2023). Stop Words for Processing Software Engineering Documents: Do they Matter? Proceedings - 2023 IEEE/ACM 2nd International Workshop on Natural Language-Based Software Engineering, NLBSE 2023, 40–47. https://doi.org/10.1109/NLBSE59153.2023.00016

Hermawan, A., Jowensen, I., Junaedi, J., & Edy. (2023). Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine. JST (Jurnal Sains Dan Teknologi), 12(1), 129–137. https://doi.org/10.23887/jstundiksha.v12i1.52358

Hidayat, R., Nur Rahman, R., Reifin Perdana, M., Teknik Informatika, P., Sains dan Teknologi, F., & Muhammadiyah Kalimantan Timur, U. (2024). Analisis Sentimen Aplikasi Identitas Kependudukan Digital (IKD) Menggunakan Metode Naïve Bayes. Jurnal Sistem Informasi Dan Ilmu Komputer, 2(1), 129–140. Retrieved from https://doi.org/10.59581/jusiik-widyakarya.v2i1.2320

Jayasinga, I. P. A., & Triono, A. (2023). Digitalization of Population Administration to Facilitate Public Services in the Era of Regional Autonomy. International Journal of Multicultural and Multireligious Understanding, 10(5), 484. https://doi.org/10.18415/ijmmu.v10i5.4725

JoMingyu. (2024). google-play-scraper 1.2.7. Retrieved July 1, 2024, from pypi.org website: https://pypi.org/project/google-play-scraper/

KEMENDAGRI, D. D. (2022). Identitas Kependudukan Digital. Retrieved July 1, 2024, from https://play.google.com/store/apps/details?id=gov.dukcapil.mobile_id&hl=

Krstinić, D., Braović, M., Šerić, L., & Božić-Štulić, D. (2020). Multi-label Classifier Performance Evaluation with Confusion Matrix. 01–14. https://doi.org/10.5121/csit.2020.100801

Maimori, R., Eliwatis, & Syafriwaldi. (2022). Utilization of Information Communication Technology on Education and Social Change of Village Community. JURNAL AT-TAGHYIR, 5(1), 157–178. https://doi.org/10.24952/taghyir.v5i1.6011

Maulana, R., Voutama, A., & Ridwan, T. (2023). Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC. Jurnal Teknologi Terpadu, 9(1), 42–48. https://doi.org/10.54914/jtt.v9i1.609

Merdiansah, R., Siska, S., & Ali Ridha, A. (2024). Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT. Jurnal Ilmu Komputer Dan Sistem Informasi (JIKOMSI), 7(1), 221–228. https://doi.org/10.55338/jikomsi.v7i1.2895

Muslim, M. A., Sciences, N., Semarang, U. N., Info, A., Mining, T., Machine, S. V., & Search, G. (2020). Support Vector Machine (SVM) Optimization Using Grid Search and Unigram to Improve E-Commerce Review Accuracy. Journal of Soft Computing Exploration, 1(1), 8–15. https://doi.org/10.52465/joscex.v1i1.3

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711. https://doi.org/10.30645/j-sakti.v5i2.369

Purnamasari, D. D. (2023). Pengguna Identitas Kependudukan Digital Ditarget Capai 50 Juta Jiwa di 2023Title. Retrieved July 1, 2024, from https://www.kompas.id/baca/polhuk/2023/05/03/pengguna-identitas-kependudukan-digital-ditarget-capai-50-juta-jiwa-di-2023

Rahmawati, C., & Sukmasetya, P. (2022). Sentimen Analisis Opini Masyarakat Terhadap Kebijakan Kominfo atas Pemblokiran Situs non-PSE pada Media Sosial Twitter. JURIKOM (Jurnal Riset Komputer), 9(5), 1393. https://doi.org/10.30865/jurikom.v9i5.4950

Romaito, E. S., Anam, M. K., Rahmaddeni, Ulfah, & Noviciate, A. (2021). Dalam Analisa Sentimen Pilkada Pada Twitter. 169–179. Retrieved from https://doi.org/10.22303/csrid.13.3.2021.169-179

Safitri, T., Umaidah, Y., & Maulana, I. (2023). Analisis Sentimen Pengguna Twitter Terhadap Grup Musik BTS Menggunakan Algoritma Support Vector Machine. Journal of Applied Informatics and Computing, 7(1), 28–35. https://doi.org/10.30871/jaic.v7i1.5039

Safryda Putri, D., & Ridwan, T. (2023). Analisis Sentimen Ulasan Aplikasi Pospay Dengan Algoritma Support Vector Machine. Jurnal Ilmiah Informatika, 11(01), 32–40. https://doi.org/10.33884/jif.v11i01.6611

Supriyanto, B. F. S., & Rosalin, S. (2023). Analisis Sentimen Program Merdeka Belajar dengan Text Analysis Wordcloud & Word Frequency. Jurnal Minfo Polgan, 12(1), 25–32. https://doi.org/10.33395/jmp.v12i1.12312

Turki, T., & Roy, S. S. (2022). Novel Hate Speech Detection Using Word Cloud Visualization and Ensemble Learning Coupled with Count Vectorizer. Applied Sciences (Switzerland), 12(13). https://doi.org/10.3390/app12136611

Wahyuningsih, N., & Hendry, H. (2023). Perbandingan Metode Klasifikasi Dalam Analisis Sentimen Masyarakat Terhadap Identitas Kependudukan Digital (Ikd). JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 8(4), 1218–1227. https://doi.org/10.29100/jipi.v8i4.4155

Zhang, S., Zhong, H., Wei, C., & Zhang, D. (2022). Research on Logistics Service Assessment for Smart City: A Users’ Review Sentiment Analysis Approach. Electronics (Switzerland), 11(23), 1–18. https://doi.org/10.3390/electronics11234018

Downloads

Published

2024-09-23

How to Cite

Maulana Abrari, M. N., & Abdulloh, F. F. (2024). COMPARISON OF MACHINE LEARNING ALGORITHMS FOR SENTIMENT ANALYSIS OF DIGITAL IDENTITY APPLICATION USERS. Jurnal Pilar Nusa Mandiri, 20(2), 146–154. https://doi.org/10.33480/pilar.v20i2.5736