Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
In the rapidly evolving digital era, the Population Identity Application (IKD) plays a crucial role in streamlining civil administration processes in Indonesia, allowing easier and faster access to population services. This study aims to explore the application of machine learning algorithms in analyzing user responses to the IKD application. Three popular algorithms: Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), and Naïve Bayes were chosen to classify sentiment from 1301 user reviews on the Google Play Store into positive and negative categories. After performing data preprocessing such as tokenization and stemming, hyperparameter optimization was conducted using GridSearchCV to enhance classification accuracy. The research results indicate that the SVM algorithm, optimized with hyperparameters, including the use of the rbf kernel and a parameter value of C = 1, achieved the highest accuracy of 85.60%, making it the most effective method for sentiment classification of the IKD application. These findings provide valuable insights for the government and developers in refining the features and performance of IKD, contributing to the efficiency and security of digital administration in Indonesia. Furthermore, this study opens opportunities for further development that is more responsive to user needs and expectations in the future.
Balit, M. N. B., Utomo, F. S. (2024). Sentiment Analysis of pegipegi.com Review on Google Play Store with Naïve Bayes. Sistemasi: Jurnal Sistem Informasi, 13.3, 1044–1053. https://doi.org/10.32520/stmsi.v13i3.3913
Cahyono, N., & Dewi Setiyawati. (2023). Analisis Sentimen Pengguna Sosial Media Twitter Terhadap Perokok Di Indonesia. Indonesian Journal of Computer Science, 12(1), 262–272. https://doi.org/10.33022/ijcs.v12i1.3154
Ditami, G. R., Ripanti, E. F., & Sujaini, H. (2022). Implementasi Support Vector Machine untuk Analisis Sentimen Terhadap Pengaruh Program Promosi Event Belanja pada Marketplace. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 8(3), 508. https://doi.org/10.26418/jp.v8i3.56478
Doloksaribu, H. P., & Yusran Timur Samuel. (2022). Komparasi Algoritma Data Mining Untuk Analisis Sentimen Aplikasi Pedulilindungi. Jurnal Teknologi Informasi: Jurnal Keilmuan Dan Aplikasi Bidang Teknik Informatika, 16(1), 1–11. https://doi.org/10.47111/jti.v16i1.3747
Dukcapiladmin. (2023). Identitas Kependudukan Digital (IKD) / Digital IDo Title. Retrieved July 1, 2024, from https://dukcapil.madiunkab.go.id/identitas-kependudukan-digital-digital-id/
Fan, Y., Arora, C., & Treude, C. (2023). Stop Words for Processing Software Engineering Documents: Do they Matter? Proceedings - 2023 IEEE/ACM 2nd International Workshop on Natural Language-Based Software Engineering, NLBSE 2023, 40–47. https://doi.org/10.1109/NLBSE59153.2023.00016
Hermawan, A., Jowensen, I., Junaedi, J., & Edy. (2023). Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine. JST (Jurnal Sains Dan Teknologi), 12(1), 129–137. https://doi.org/10.23887/jstundiksha.v12i1.52358
Hidayat, R., Nur Rahman, R., Reifin Perdana, M., Teknik Informatika, P., Sains dan Teknologi, F., & Muhammadiyah Kalimantan Timur, U. (2024). Analisis Sentimen Aplikasi Identitas Kependudukan Digital (IKD) Menggunakan Metode Naïve Bayes. Jurnal Sistem Informasi Dan Ilmu Komputer, 2(1), 129–140. Retrieved from https://doi.org/10.59581/jusiik-widyakarya.v2i1.2320
Jayasinga, I. P. A., & Triono, A. (2023). Digitalization of Population Administration to Facilitate Public Services in the Era of Regional Autonomy. International Journal of Multicultural and Multireligious Understanding, 10(5), 484. https://doi.org/10.18415/ijmmu.v10i5.4725
JoMingyu. (2024). google-play-scraper 1.2.7. Retrieved July 1, 2024, from pypi.org website: https://pypi.org/project/google-play-scraper/
KEMENDAGRI, D. D. (2022). Identitas Kependudukan Digital. Retrieved July 1, 2024, from https://play.google.com/store/apps/details?id=gov.dukcapil.mobile_id&hl=
Krstinić, D., Braović, M., Šerić, L., & Božić-Štulić, D. (2020). Multi-label Classifier Performance Evaluation with Confusion Matrix. 01–14. https://doi.org/10.5121/csit.2020.100801
Maimori, R., Eliwatis, & Syafriwaldi. (2022). Utilization of Information Communication Technology on Education and Social Change of Village Community. JURNAL AT-TAGHYIR, 5(1), 157–178. https://doi.org/10.24952/taghyir.v5i1.6011
Maulana, R., Voutama, A., & Ridwan, T. (2023). Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC. Jurnal Teknologi Terpadu, 9(1), 42–48. https://doi.org/10.54914/jtt.v9i1.609
Merdiansah, R., Siska, S., & Ali Ridha, A. (2024). Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT. Jurnal Ilmu Komputer Dan Sistem Informasi (JIKOMSI), 7(1), 221–228. https://doi.org/10.55338/jikomsi.v7i1.2895
Muslim, M. A., Sciences, N., Semarang, U. N., Info, A., Mining, T., Machine, S. V., & Search, G. (2020). Support Vector Machine (SVM) Optimization Using Grid Search and Unigram to Improve E-Commerce Review Accuracy. Journal of Soft Computing Exploration, 1(1), 8–15. https://doi.org/10.52465/joscex.v1i1.3
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711. https://doi.org/10.30645/j-sakti.v5i2.369
Purnamasari, D. D. (2023). Pengguna Identitas Kependudukan Digital Ditarget Capai 50 Juta Jiwa di 2023Title. Retrieved July 1, 2024, from https://www.kompas.id/baca/polhuk/2023/05/03/pengguna-identitas-kependudukan-digital-ditarget-capai-50-juta-jiwa-di-2023
Rahmawati, C., & Sukmasetya, P. (2022). Sentimen Analisis Opini Masyarakat Terhadap Kebijakan Kominfo atas Pemblokiran Situs non-PSE pada Media Sosial Twitter. JURIKOM (Jurnal Riset Komputer), 9(5), 1393. https://doi.org/10.30865/jurikom.v9i5.4950
Romaito, E. S., Anam, M. K., Rahmaddeni, Ulfah, & Noviciate, A. (2021). Dalam Analisa Sentimen Pilkada Pada Twitter. 169–179. Retrieved from https://doi.org/10.22303/csrid.13.3.2021.169-179
Safitri, T., Umaidah, Y., & Maulana, I. (2023). Analisis Sentimen Pengguna Twitter Terhadap Grup Musik BTS Menggunakan Algoritma Support Vector Machine. Journal of Applied Informatics and Computing, 7(1), 28–35. https://doi.org/10.30871/jaic.v7i1.5039
Safryda Putri, D., & Ridwan, T. (2023). Analisis Sentimen Ulasan Aplikasi Pospay Dengan Algoritma Support Vector Machine. Jurnal Ilmiah Informatika, 11(01), 32–40. https://doi.org/10.33884/jif.v11i01.6611
Supriyanto, B. F. S., & Rosalin, S. (2023). Analisis Sentimen Program Merdeka Belajar dengan Text Analysis Wordcloud & Word Frequency. Jurnal Minfo Polgan, 12(1), 25–32. https://doi.org/10.33395/jmp.v12i1.12312
Turki, T., & Roy, S. S. (2022). Novel Hate Speech Detection Using Word Cloud Visualization and Ensemble Learning Coupled with Count Vectorizer. Applied Sciences (Switzerland), 12(13). https://doi.org/10.3390/app12136611
Wahyuningsih, N., & Hendry, H. (2023). Perbandingan Metode Klasifikasi Dalam Analisis Sentimen Masyarakat Terhadap Identitas Kependudukan Digital (Ikd). JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 8(4), 1218–1227. https://doi.org/10.29100/jipi.v8i4.4155
Zhang, S., Zhong, H., Wei, C., & Zhang, D. (2022). Research on Logistics Service Assessment for Smart City: A Users’ Review Sentiment Analysis Approach. Electronics (Switzerland), 11(23), 1–18. https://doi.org/10.3390/electronics11234018
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.