PERFORMANCE COMPARISON OF RANDOM FOREST REGRESSION, SVR MODELS IN STOCK PRICE PREDICTION

Authors

  • Maysas Yafi Urrochman Institut Teknologi Dan Bisnis Widya Gama Lumajang
  • Hasyim Asy'ari Institut Teknologi Dan Bisnis Widya Gama Lumajang
  • Fadhel Akhmad Hizham Institut Teknologi Dan Bisnis Widya Gama Lumajang

DOI:

https://doi.org/10.33480/pilar.v21i1.6072

Keywords:

machine learning, random forest regression, stock price prediction, support vector regression

Abstract

The stock market is characterized by high volatility and complexity, making it an intriguing and challenging subject for researchers and practitioners. This study aims to predict stock prices by comparing the performance of two machine learning models: Random Forest Regression and Support Vector Regression (SVR). These models were selected for their ability to handle complex data and high volatility. The dataset used in this study consists of BNI stock data over the last five years (2019–2024), comprising a total of 1,211 data points. Testing was conducted using a cross-validation approach, and model performance was evaluated based on several metrics, including MSE, R², RMSE, MAPE, MAE, and Score. The results indicate that Random Forest Regression outperforms SVR. The model achieved an MAE of 17.766, an RMSE of 22.376, and an R² of 0.997. These findings suggest that Random Forest Regression is more effective in predicting stock prices, particularly in unstable market conditions. This study recommends Random Forest Regression as a reliable model for stock price prediction, with potential applications in other stock markets with similar characteristics.

Downloads

Download data is not yet available.

References

Bansal, M., Goyal, A., & Choudhary, A. (2022). Stock market prediction with high accuracy using machine learning techniques. Procedia Computer Science, 215, 247–265. https://doi.org/10.1016/j.procs.2022.12.028

Bastian, M. E., Rahayudi, B., & Ratnawati, D. E. (2021). Prediksi trend harga saham jangka pendek berdasarkan fitur technical analysis dengan menggunakan algoritma random forest. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(10), 4536–4542.

FADLI, M., & Saputra, R. A. (2023). Klasifikasi Dan Evaluasi Performa Model Random Forest Untuk Prediksi Stroke. Jurnal Teknik, 12(2). http://dx.doi.org/10.31000/jt.v12i2.9099

Fitri, E., & Riana, D. (2022). Analisa Perbandingan Model Prediction Dalam Prediksi Harga Saham Menggunakan Metode Linear Regression, Random Forest Regression Dan Multilayer Perceptron. METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi, 6(1), 69–78. https://doi.org/10.46880/jmika.Vol6No1.pp69-78

Kumar, A., & Chaudhry, M. (2021). Review and Analysis of Stock Market Data Prediction Using Data mining Techniques. 2021 5th International Conference on Information Systems and Computer Networks (ISCON), 1–10. https://doi.org/10.1109/iscon52037.2021.9702498

Kumar, D., Sarangi, P. K., & Verma, R. (2022). A systematic review of stock market prediction using machine learning and statistical techniques. Materials Today: Proceedings, 49, 3187–3191. https://doi.org/10.1016/j.matpr.2020.11.399

Kurani, A., Doshi, P., Vakharia, A., & Shah, M. (2023). A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting. Annals of Data Science, 10(1), 183–208. https://doi.org/10.1007/s40745-021-00344-x

Panggabean, R., & Widyasari, Y. D. L. (2023). A comparison between super vector regression, random forest regressor, lstm, and gru in forecasting bitcoin price. International ABEC, 281–287.

Pashankar, S. S., Shendage, J. D., & Pawar, J. (2024). Machine Learning Techniques For Stock Price Prediction-A Comparative Analysis Of Linear Regression, Random Forest, And Support Vector Regression. Journal of Advanced Zoology, 45(S-4), 118–127. https://doi.org/10.53555/jaz.v45is4.4164.

Patriya, E. (2020). Implementasi support vector machine pada prediksi harga saham gabungan (ihsg). Jurnal Ilmiah Teknologi Dan Rekayasa, 25(1), 24–38. http://dx.doi.org/10.35760/tr.2020.25i1.2571

Prasetya, M. R. A., Priyatno, A. M., & Nurhaeni. (2023). Penanganan Imputasi Missing Values pada Data Time Series dengan Menggunakan Metode Data Mining. Jurnal Informasi Dan Teknologi, 5(2), 52–62. https://doi.org/10.37034/jidt.v5i2.324.

Priyatno, A. M., Tanjung, L. S., Ramadhan, W. F., Cholidhazia, P., Jati, P. Z., & Firmananda, F. I. (2023). Comparison Random Forest Regression and Linear Regression For Forecasting BBCA Stock Price. Jurnal Teknik Industri Terintegrasi, 6(3), 718–732. https://doi.org/10.31004/jutin.v6i3.16933

Putra, A. L., & Kurniawati, A. K. (2021). Analisis Prediksi Harga Saham PT. Astra International Tbk Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) dan Support Vector Regression (SVR): Array. Jurnal Ilmiah Komputasi, 20(3), 417–424. Retrieved from https://ejournal.jak-stik.ac.id/index.php/komputasi/article/view/2732

Raya, M., Srinivasan, D., Vishnu, M., Adedoyin, A., & Sathiyanarayanan, M. (2022). Visualizing, Comparing and Forecasting Stock Market Prediction. 2022 IEEE Delhi Section Conference (DELCON), 1–7. https://doi.org/10.1109/delcon54057.2022.9753359

Saputra, C. B., & Koesrindartoto, D. P. (2024). Pemanfaatan Analisis Sentimen Youtube untuk Prediksi Harga Saham: Studi pada Investor Retail Indonesia. Jurnal Manajemen, 21(1), 1–17. https://doi.org/10.25170/jm.v21i1.5184

Syafira, M. N., & Saepudin, D. (2023). Prediksi Return Saham dengan Metode Random Forest dan Penerapannya untuk Seleksi Portofolio. EProceedings of Engineering, 10(5).

Thumu, S. R., Nellore, G., & others. (2024). Optimized Ensemble Support Vector Regression Models for Predicting Stock Prices with Multiple Kernels. Acta Informatica Pragensia, 13(1), 24-37. doi: 10.18267/j.aip.226

Wahanani, H. E., Swari, M. H. P., & Akbar, F. A. (2020). Case based reasoning prediksi waktu studi mahasiswa menggunakan metode euclidean distance dan normalisasi min-max. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6), 1279–1288. https://doi.org/10.25126/jtiik.2020763880

Yin, L., Li, B., Li, P., & Zhang, R. (2023). Research on stock trend prediction method based on optimized random forest. CAAI Transactions on Intelligence Technology, 8(1), 274–284. https://doi.org/10.1049/cit2.12067

Zheng, J., Xin, D., Cheng, Q., Tian, M., & Yang, L. (2024). The Random Forest Model for Analyzing and Forecasting the US Stock Market in the Context of Smart Finance. ArXiv Preprint ArXiv:2402.17194.

Downloads

Published

2025-03-14

How to Cite

Urrochman, M. Y., Asy’ari, H., & Hizham, F. A. (2025). PERFORMANCE COMPARISON OF RANDOM FOREST REGRESSION, SVR MODELS IN STOCK PRICE PREDICTION. Jurnal Pilar Nusa Mandiri, 21(1), 16–23. https://doi.org/10.33480/pilar.v21i1.6072