






Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Tourism is important in economic growth and regional development, especially in East Java Province with diverse tourist attractions. However, the mapping of domestic and foreign tourist visit patterns in this province is still limited. For this reason, this study uses the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) method which can group density-based data without determining the number of clusters from the beginning and handle noise. The study aims to map districts/cities in East Java based on the number of tourist visits from 2018 to 2022, using visit data from the East Java Provincial Culture and Tourism Office. The analysis results show that in domestic tourist data, with parameters MinPts = 3 and ε = 1.00, one main cluster is formed consisting of 31 tourist locations and 7 noisy locations. In foreign tourist data, with ε = 0.6 and MinPts = 3, there is one cluster with 30 tourist locations and 8 other locations are categorized as noisy. Noisy locations tend to have higher visits but do not fit into the main cluster. These findings provide important insights for more targeted tourism promotion strategies and efficient resource allocation in East Java.
Armiady, D. (2022). Analisis Metode DBSCAN (Density-Based Spatial Clustering of Application with Noise) dalam Mendeteksi Data Outlier. JURIKOM (Jurnal Riset Komputer), 9(6), 2158. https://doi.org/10.30865/jurikom.v9i6.5080
Badan Pusat Statistik. (2023). Statistik Pariwisata Provinsi Jawa Timur 2022. https://jatim.bps.go.id/id/publication/2023/07/03/5bab263b9158357b69bc9309/statistik-pariwisata-provinsi-jawa-timur-2022.html
Batool, F., & Hennig, C. (2021). Clustering with the Average Silhouette Width. Computational Statistics & Data Analysis, 158, 107190. https://doi.org/10.1016/j.csda.2021.107190
Giordani, P., Ferraro, M. B., & Martella, F. (2020). An Introduction to Clustering with R (Vol. 1). Springer Singapore. https://doi.org/10.1007/978-981-13-0553-5
Kristianto, A. (2022). Implementasi DBSCAN dalam Clustering Data Minat Mahasiswa Setelah Pandemi Covid19. KONSTELASI: Konvergensi Teknologi Dan Sistem Informasi, 2(2). https://doi.org/10.24002/konstelasi.v2i2.5638
Monalisa, S., Juniarti, Y., Saputra, E., Muttakin, F., & Ahsyar, T. K. (2023). Customer segmentation with RFM models and demographic variable using DBSCAN algorithm. TELKOMNIKA (Telecommunication Computing Electronics and Control), 21(4), 742. https://doi.org/10.12928/telkomnika.v21i4.22759
Qori’atunnadyah, M. (2022). Pengelompokkan Wilayah Berdasarkan Rasio Guru-Murid Pada Jenjang Pendidikan Menggunakan Algoritma K-Means. Journal of Informatics Development, 1(2), 33–38.
Qori’atunnadyah, M. (2023a). Fuzzy C-Means for Regional Clustering in East Java Province Based on Human Development Index Indicators. J Statistika, 16(2), 524.
Qori’atunnadyah, M. (2023b). Metode C-Means untuk Pengelompokkan Kabupaten/Kota Provinsi Jawa Timur berdasarkan Indikator Indeks Pembangunan Manusia (IPM). Journal of Informatics Development, 1(2), 51–58. https://doi.org/10.30741/jid.v2i2.1013
Qori’atunnadyah, M. (2024). Mapping Domestic and Foreign Tourists in East Java Using C-Means Clustering. Jurnal Statistika Dan Aplikasinya, 8(1), 54–62. https://doi.org/10.21009/JSA.08105
Qori’atunnadyah, M., Liyundira, F. S., & Indrianasari, N. T. (2023). Grouping Manufacturing Companies Based on Factors Affecting Firm Value Using C-Means Clustering (pp. 28–31). https://doi.org/10.2991/978-94-6463-346-7_6
Rahman, R. R. A., & Wijayanto, A. W. (2021). PENGELOMPOKAN DATA GEMPA BUMI MENGGUNAKAN ALGORITMA DBSCAN. Jurnal Meteorologi Dan Geofisika, 22(1), 31. https://doi.org/10.31172/jmg.v22i1.738
Riyono, J., Pujiastuti, C. E., Latifa, A., & Putri, R. (2024). CLUSTERING NEGARA BERDASARKAN SKOR PENGENDALIAN KONSUMSI TEMBAKAU MENGGUNAKAN ALGORITMA DBSCAN. Jurnal Teknik Informatika Kaputama (JTIK), 8(1).
Sabor, K., Jougnot, D., Guerin, R., Steck, B., Henault, J.-M., Apffel, L., & Vautrin, D. (2021). A data mining approach for improved interpretation of ERT inverted sections using the DBSCAN clustering algorithm. Geophysical Journal International, 225(2), 1304–1318. https://doi.org/10.1093/gji/ggab023
Saputri, F. W., & Arianto, D. B. (2023). PERBANDINGAN PERFORMA ALGORITMA K-MEANS, K-MEDOIDS, DAN DBSCAN DALAM PENGGEROMBOLAN PROVINSI DI INDONESIA BERDASARKAN INDIKATOR KESEJAHTERAAN MASYARAKAT. Jurnal Teknologi Informasi: Jurnal Keilmuan Dan Aplikasi Bidang Teknik Informatika, 7(2), 138–151. https://doi.org/10.47111/jti.v7i2.9558
Syafrianto, A., & Riswanto, E. (2023). Pengelompokkan Jumlah Kunjungan Mahasiswa ke Perpustakaan Kampus Menggunakan Algoritma DBSCAN. G-Tech: Jurnal Teknologi Terapan, 7(1), 75–81. https://doi.org/10.33379/gtech.v7i1.1925
Copyright (c) 2025 Marita Qori'atunnadyah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.