PREDICTING SOLAR POWER GENERATION: A MACHINE LEARNING APPROACH FOR GRID STABILITY AND EFFICIENCY

Authors

  • Popong Setiawati Esa Unggul University
  • Adhitio Satyo Bayangkari Karno Gunadarma University
  • Widi Hastomo ITB Ahmad Dahlan
  • Ellya Sestri ITB Ahmad Dahlan
  • Dian Kasoni STMIK Antar Bangsa
  • Dodi Arif Gunadarma University
  • Fahrul Razi ITB Ahmad Dahlan

DOI:

https://doi.org/10.33480/pilar.v21i1.6126

Keywords:

energy forecasting, machine learning, renewable energy

Abstract

In countries with high levels of insolation, the demand for renewable energy sources has driven the rapid emergence and growth of solar power plants. Maintaining grid stability and efficient power management in response to weather variations that affect solar radiation intensity and battery consumption limits remains a major challenge. This study aims to develop a machine learning-based prediction model to estimate the electricity generated by solar power plants using weather data. Four algorithms are utilized: Linear Regression, Random Forest Regressor, Decision Tree Regressor, and Gradient Boosting Regressor. The results show that the Random Forest algorithm produces the best model, with MAE and RMSE values of 0.1114281 and 0.3187232, respectively. This research contributes to the literature, particularly on the relatively unexplored topic of using multiple machine learning models to predict energy output from photovoltaic systems. The findings have the potential to inform more efficient energy policies and improve energy integration technologies for grid-connected solar power systems.

Downloads

Download data is not yet available.

References

Abdelsattar, M., Ismeil, M. A., Azim Zayed, M. M. A., Abdelmoety, A., & Emad-Eldeen, A. (2024). Assessing Machine Learning Approaches for Photovoltaic Energy Prediction in Sustainable Energy Systems. IEEE Access, 12(August), 107599–107615. https://doi.org/10.1109/ACCESS.2024.3437191

Ahmad, N., Ghadi, Y., Adnan, M., & Ali, M. (2022). Load Forecasting Techniques for Power System: Research Challenges and Survey. IEEE Access, 10, 71054–71090. https://doi.org/10.1109/ACCESS.2022.3187839

Ahmad, T., Madonski, R., Zhang, D., Huang, C., & Mujeeb, A. (2022). Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews, 160, 112128. https://doi.org/10.1016/j.rser.2022.112128

Al-Dahidi, S., Madhiarasan, M., Al-Ghussain, L., Abubaker, A. M., Ahmad, A. D., Alrbai, M., … Zio, E. (2024). Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework. Energies, Vol. 17. https://doi.org/10.3390/en17164145

AlKheder, S., & AlOmair, A. (2022). Urban traffic prediction using metrological data with fuzzy logic, long short-term memory (LSTM), and decision trees (DTs). Natural Hazards, 111(2), 1685–1719. https://doi.org/10.1007/s11069-021-05112-x

Aning, S., & Przybyła-Kasperek, M. (2022). Comparative Study of Twoing and Entropy Criterion for Decision Tree Classification of Dispersed Data. Procedia Computer Science, 207, 2434–2443. https://doi.org/10.1016/j.procs.2022.09.301

Aslam, S., Herodotou, H., Mohsin, S. M., Javaid, N., Ashraf, N., & Aslam, S. (2021). A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renewable and Sustainable Energy Reviews, 144, 110992. https://doi.org/10.1016/j.rser.2021.110992

Bakır, R., Orak, C., & Yüksel, A. (2024). Optimizing hydrogen evolution prediction: A unified approach using random forests, lightGBM, and Bagging Regressor ensemble model. International Journal of Hydrogen Energy, 67, 101–110. https://doi.org/10.1016/j.ijhydene.2024.04.173

Bashir, A. K., Khan, S., Prabadevi, B., Deepa, N., Alnumay, W. S., Gadekallu, T. R., & Maddikunta, P. K. R. (2021). Comparative Analysis of Machine Learning Algorithms for prediction of Smart Grid Stability. International Transactions on Electrical Energy Systems, 31(9). https://doi.org/10.1002/2050-7038.12706

Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54(3), 1937–1967. https://doi.org/10.1007/s10462-020-09896-5

Bouquet, P., Jackson, I., Nick, M., & Kaboli, A. (2024). AI-based forecasting for optimised solar energy management and smart grid efficiency. International Journal of Production Research, 62(13), 4623–4644. https://doi.org/10.1080/00207543.2023.2269565

Chang, R., Bai, L., & Hsu, C.-H. (2021). Solar power generation prediction based on deep Learning. Sustainable Energy Technologies and Assessments, 47, 101354. https://doi.org/10.1016/j.seta.2021.101354

Costa, V. G., & Pedreira, C. E. (2023). Recent advances in decision trees: an updated survey. Artificial Intelligence Review, 56(5), 4765–4800. https://doi.org/10.1007/s10462-022-10275-5

Ghosh, D., & Cabrera, J. (2022). Enriched Random Forest for High Dimensional Genomic Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(5), 2817–2828. https://doi.org/10.1109/TCBB.2021.3089417

Hanif, M. F., Siddique, M. U., Si, J., Naveed, M. S., Liu, X., & Mi, J. (2024). Enhancing Solar Forecasting Accuracy with Sequential Deep Artificial Neural Network and Hybrid Random Forest and Gradient Boosting Models across Varied Terrains. Advanced Theory and Simulations, 7(7), 2301289. https://doi.org/10.1002/adts.202301289

Hastomo, W., Bayangkari Karno, A. S., Kalbuana, N., Meiriki, A., & Sutarno. (2021). Characteristic Parameters of Epoch Deep Learning to Predict Covid-19 Data in Indonesia. Journal of Physics: Conference Series, 1933(1). https://doi.org/10.1088/1742-6596/1933/1/012050

Helveston, J. P., He, G., & Davidson, M. R. (2022). Quantifying the cost savings of global solar photovoltaic supply chains. Nature, 612(7938), 83–87. https://doi.org/10.1038/s41586-022-05316-6

Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., & Valdez, R. (2022). A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability, 14(8), 4792. https://doi.org/10.3390/su14084792

Huang, J.-C., Ko, K.-M., Shu, M.-H., & Hsu, B.-M. (2020). Application and comparison of several machine learning algorithms and their integration models in regression problems. Neural Computing and Applications, 32(10), 5461–5469. https://doi.org/10.1007/s00521-019-04644-5

Ibrar, M., Hassan, M. A., Shaukat, K., Alam, T. M., Khurshid, K. S., Hameed, I. A., … Luo, S. (2022). A Machine Learning-Based Model for Stability Prediction of Decentralized Power Grid Linked with Renewable Energy Resources. Wireless Communications and Mobile Computing, 2022. https://doi.org/10.1155/2022/2697303

James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An introduction to statistical learning: With applications in python (1st ed.). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-38747-0

James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). Tree-Based Methods. Springer Nature: An Introduction to Statistical Learning, 331–366. https://doi.org/10.1007/978-3-031-38747-0_8

Karno, A. S. B., Hastomo, W., Surawan, T., Lamandasa, S. R., Usuli, S., Kapuy, H. R., & Digdoyo, A. (2023). Classification of cervical spine fractures using 8 variants EfficientNet with transfer learning. International Journal of Electrical and Computer Engineering, 13(6), 7065–7077. https://doi.org/10.11591/ijece.v13i6.pp7065-7077

Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585, 609–629. https://doi.org/10.1016/j.ins.2021.11.036

Mirshekali, H., Santos, A. Q., & Shaker, H. R. (2023). A Survey of Time-Series Prediction for Digitally Enabled Maintenance of Electrical Grids. Energies, Vol. 16. https://doi.org/10.3390/en16176332

Oladapo, B. I., Olawumi, M. A., & Omigbodun, F. T. (2024). Machine Learning for Optimising Renewable Energy and Grid Efficiency. Atmosphere, Vol. 15. https://doi.org/10.3390/atmos15101250

Poddar, S., Kay, M., Prasad, A., Evans, J. P., & Bremner, S. (2023). Changes in solar resource intermittency and reliability under Australia’s future warmer climate. Solar Energy, 266, 112039. https://doi.org/10.1016/j.solener.2023.112039

Rathore, N., & Panwar, N. L. (2022). Outline of solar energy in India: advancements, policies, barriers, socio-economic aspects and impacts of COVID on solar industries. International Journal of Ambient Energy, 43(1), 7630–7642. https://doi.org/10.1080/01430750.2022.2075925

Safari, A., Kheirandish Gharehbagh, H., & Nazari Heris, M. (2023). DeepVELOX: INVELOX Wind Turbine Intelligent Power Forecasting Using Hybrid GWO–GBR Algorithm. Energies, 16(19), 6889. https://doi.org/10.3390/en16196889

Suanpang, P., & Jamjuntr, P. (2024). Machine Learning Models for Solar Power Generation Forecasting in Microgrid Application Implications for Smart Cities. Sustainability, 16(14), 6087. https://doi.org/10.3390/su16146087

Tan, K. M., Babu, T. S., Ramachandaramurthy, V. K., Kasinathan, P., Solanki, S. G., & Raveendran, S. K. (2021). Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. Journal of Energy Storage, 39, 102591. https://doi.org/10.1016/j.est.2021.102591

Yulianto, R., Rusli, M. S., Satyo, A., Karno, B., Hastomo, W., & Kardian, A. R. (2023). Innovative UNET-Based Steel Defect Detection Using 5 Pretrained Models. Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy. 10(4), 2365–2378.

Downloads

Published

2025-03-14

How to Cite

Setiawati, P., Karno, A. S. B., Hastomo, W., Sestri, E., Kasoni, D., Arif, D., & Razi, F. (2025). PREDICTING SOLAR POWER GENERATION: A MACHINE LEARNING APPROACH FOR GRID STABILITY AND EFFICIENCY. Jurnal Pilar Nusa Mandiri, 21(1), 34–43. https://doi.org/10.33480/pilar.v21i1.6126