DETERMINATION OF POTENTIAL BUSINESS LOCATIONS USING DATA MINING CLUSTERING

Authors

  • Dian Erdiansyah Budi Luhur University
  • Indra Nugraha Abdullah Budi Luhur University
  • Amandus Jong Tallo Kupang State Polytechnic

DOI:

https://doi.org/10.33480/pilar.v21i1.6295

Keywords:

clustering, data mining, gaussian mixture model, k-means, optimal business location

Abstract

Potential locations for businesses are highly sought after by business people to set up, expand their business, or establish a new business.  Limited information on potential business locations is still a problem faced by many business people in making business decisions.  The purpose of this research is to overcome the limitations of potential business location information.  The approach used is the K-Means data mining clustering method which is compared to the Gaussian Mixture Model.  The dataset used is residential, road access data and business points that already exist around the location.  Both clustering methods are compared to the model evaluation method to determine the model with the best performance.  The results show that the clustering method with the K-Means algorithm is the clustering model with the best performance.  The results of the clustering resulted in 2 clusters, one of which is a cluster of potential business locations of 1041 locations.  The conclusion of this study is that data mining clustering can be used to determine the optimal business location cluster.  The results of this study can be recommended for business people to look for potential business locations, and for local governments to publicize potential business locations in order to attract investors from outside.

Downloads

Download data is not yet available.

Author Biography

Amandus Jong Tallo, Kupang State Polytechnic

References

Afifah, A. N., Nurcahyawati, V., & Hananto, V. R. (2023). Analisis Clustering dan Pemetaan Sebaran Pelanggan Perusahaan Properti di Sidoarjo. Jurnal Edukasi Dan Penelitian Informatika, 9(3), 502–508. https://jurnal.untan.ac.id/index.php/jepin/article/view/67935

Aguilar, E. J., & Barbosa, V. C. (2023). Shape complexity in cluster analysis. PLoS ONE, 18(5 May), 1–19. https://doi.org/10.1371/journal.pone.0286312

Diana, A., Ariesta, A., Wibowo, A., & Risaychi, D. A. B. (2023). New Student Clusterization Based on New Student Admission Using Data Mining Method. Jurnal Pilar Nusa Mandiri, 19(1), 1–10. https://doi.org/10.33480/pilar.v19i1.4089

Faidah, D. Y., Hudzaifa, A. M., Theresia, N., & Widiantoro, C. E. (2024). Optimalisasi Strategi Pengelompokkan Potensi Padi Sebagai Solusi Efektif Kelangkaan Beras Di Jawa Barat. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 5(1), 529–537. https://doi.org/10.46306/lb.v5i1.592

Handayanna, F., & Sunarti, S. (2024). Penerapan Algoritma K-Means Untuk Mengelompokkan Kepadatan Penduduk Di Provinsi DKI Jakarta. Journal of Applied Computer Science and Technology, 5(1), 50–55. https://doi.org/10.52158/jacost.v5i1.477

Larose, C. D. (2014). Discovering Knowledge in data : An Introduction to Data Mining (2nd ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118874059

Lee, J., An, M., Kim, Y., & Seo, J. I. (2021). Optimal allocation for electric vehicle charging stations. Energies, 14(18), 1–9. https://doi.org/https://doi.org/10.3390/en14185781

Leenawong, C., & Chaikajonwat, T. (2023). Modified K-Means Clustering for Demand-Weighted Locations : A Thailand ’ s Convenience Store Franchise - Case Study. Science and Technology, 31(2), 655–670.

Lin, T. X., Wu, Z. H., & Pan, W. T. (2022). Optimal location of logistics distribution centres with swarm intelligent clustering algorithms. PLoS ONE, 17(8 August), 1–16. https://doi.org/10.1371/journal.pone.0271928

Manika, S., Karalidis, K., & Gospodini, A. (2021). Mechanism for the Optimal Location of a Business as a Lever for the Development of the Economic Strength and Resilience of a City. Urban Science, 5(4). https://doi.org/10.3390/urbansci5040070

Mohammadi, Z., Barzinpour, F., & Teimoury, E. (2023). A location-inventory model for the sustainable supply chain of perishable products based on pricing and replenishment decisions: A case study. PLoS ONE, 18(7 July), 1–29. https://doi.org/10.1371/journal.pone.0288915

Murad, A., Faruque, F., Naji, A., Tiwari, A., Qurnfulah, E., Rahman, M., & Dewan, A. (2024). Optimizing health service location in a highly urbanized city: Multi criteria decision making and P-Median problem models for public hospitals in Jeddah City, KSA. PLoS ONE, 19(1 January), 1–14. https://doi.org/10.1371/journal.pone.0294819

Ong, A. K. S., Prasetyo, Y. T., Esteller, A. J. D., Bruno, J. E., Lagorza, K. C. O., Oli, L. E. T., Chuenyindee, T., Thana, K., Persada, S. F., & Nadlifatin, R. (2023). Consumer preference analysis on the attributes of samgyeopsal Korean cuisine and its market segmentation: Integrating conjoint analysis and K-means clustering. PLoS ONE, 18(2 February), 1–23. https://doi.org/10.1371/journal.pone.0281948

Ozkaya, G., & Demirhan, A. (2022). Multi-Criteria Analysis of Sustainable Travel and Tourism Competitiveness in Europe and Eurasia. Sustainability (Switzerland), 14(22). https://doi.org/10.3390/su142215396

Puspitaningrum, Y., & Damanuri, A. (2022). Analisis Lokasi Usaha Dalam Meningkatkan Keberhasilan Bisnis Pada Grosir Berkah Doho Dolopo Madiun. Niqosiya: Journal of Economics and Business Research, 2(2), 289–304. https://doi.org/https://doi.org/10.21154/niqosiya.v2i2.977

Rahmattullah, R., Indwiarti, I., & Rohmawati, A. A. (2023). Clustering Harga Rumah: Perbandingan Model K-Means dan Gaussian Mixture Model. E-Proceeding Of Engineering, 10(3), 3441–3449. https://openlibrary.telkomuniversity.ac.id/pustaka/files/185889/jurnal_eproc/clustering-harga-rumah-perbandingan-model-k-means-dan-gaussian-mixture-model.pdf

Rohman, N., & Wibowo, A. (2024). Clustering of Popular Spotify Songs in 2023 Using K-Means Method and Silhouette Coefficient. Jurnal Pilar Nusa Mandiri, 20(1), 18–24. https://doi.org/10.33480/pilar.v20i1.4937

Santiastry, S., Apriandari, W., Informatika, T., Sukabumi, U. M., Sukabumi, K., Bayes, N., Inggris, T. B., & Sukabumi, U. M. (2024). PENERAPAN ALGORITMA NAIVE BAYES DAN METODE CRISP-DM DALAM. 8(5), 10432–10439.

Santosa, R. G., Chrismanto, A. R., & Kurniawan, E. (2020). JEPIN (Jurnal Edukasi dan Penelitian Informatika) Analisis Cluster Terhadap Karakteristik Mahasiswa Jalur Prestasi FTI UKDW. JEPIN, 6(1), 13–22. https://jurnal.untan.ac.id/index.php/jepin/article/view/37216

Sudiantini, D., Febrianti, A. S., Nugroho, A. A., Jannah, N. A., Candra, M., Edwar, R. A., & Aliyanti, T. (2023). Pengaruh Pengambilan Lokasi Usaha Terhadap Kesuksesan Berbisnis UMKM. Jurnal Ilmiah Multidisipline, 1(9), 334–338. https://doi.org/https://doi.org/10.5281/zenodo.10044851

Tambunan, H. B., Sitanggang, R. B., Mafruddin, M. M., Prasetyawan, O., Kensianesi, Istiqomah, Cahyo, N., & Tanbar, F. (2023). Initial location selection of electric vehicles charging infrastructure in urban city through clustering algorithm. International Journal of Electrical and Computer Engineering, 13(3), 3266–3280. https://doi.org/10.11591/ijece.v13i3.pp3266-3280

Wahidah, Z., & Utari, D. T. (2023). Comparison of K-Means and Gaussian Mixture Model in Profiling Areas By Poverty Indicators. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(2), 0717–0726. https://doi.org/10.30598/barekengvol17iss2pp0717-0726

Wahyu, A., & Rushendra, R. (2022). Klasterisasi Dampak Bencana Gempa Bumi Menggunakan Algoritma K-Means di Pulau Jawa. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 8(1), 174. https://doi.org/10.26418/jp.v8i1.52260

Wamulkan A.S, U. A. H., Utami, N. W., & Anggara, I. N. Y. (2024). Bali Tourist Visits Clustered Via Tripadvisor Reviews Using K-Means Algorithm. Jurnal Pilar Nusa Mandiri, 19(2), 117–124. https://doi.org/10.33480/pilar.v19i2.4571

Wang, X., Shao, C., Xu, S., Zhang, S., Xu, W., & Guan, Y. (2020). Study on the location of private clinics based on K-means clustering method and an integrated evaluation model. IEEE Access, 8(1), 23069–23081. https://doi.org/10.1109/ACCESS.2020.2967797

Wang, X., Shen, A., Hou, X., & Tan, L. (2022). Research on cluster system distribution of traditional fort-type settlements in Shaanxi based on K-means clustering algorithm. PLoS ONE, 17(3 March). https://doi.org/10.1371/journal.pone.0264238

Wongoutong, C. (2024). The impact of neglecting feature scaling in k-means clustering. PLoS ONE, 19(12), 1–19. https://doi.org/10.1371/journal.pone.0310839

Wu, J., Liu, X., Li, Y., Yang, L., Yuan, W., & Ba, Y. (2022). A Two-Stage Model with an Improved Clustering Algorithm for a Distribution Center Location Problem under Uncertainty. Mathematics, 10(14). https://doi.org/10.3390/math10142519

Yang, C., Wen, H., Jiang, D., Xu, L., & Hong, S. (2022). Analysis of college students’ canteen consumption by broad learning clustering: A case study in Guangdong Province, China. PLoS ONE, 17(10 October), 1–18. https://doi.org/10.1371/journal.pone.0276006

You, J., Li, Z., & Du, J. (2023). A new iterative initialization of EM algorithm for Gaussian mixture models. PLoS ONE, 18(4 April), 1–17. https://doi.org/10.1371/journal.pone.0284114

Yu, W. (2022). Robust competitive facility location model with uncertain demand types. PLoS ONE, 17(8 August), 1–22. https://doi.org/10.1371/journal.pone.0273123

Downloads

Published

2025-03-14

How to Cite

Erdiansyah, D. ., Abdullah, I. N. ., & Tallo, A. J. (2025). DETERMINATION OF POTENTIAL BUSINESS LOCATIONS USING DATA MINING CLUSTERING. Jurnal Pilar Nusa Mandiri, 21(1), 72–81. https://doi.org/10.33480/pilar.v21i1.6295