






Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Potential locations for businesses are highly sought after by business people to set up, expand their business, or establish a new business. Limited information on potential business locations is still a problem faced by many business people in making business decisions. The purpose of this research is to overcome the limitations of potential business location information. The approach used is the K-Means data mining clustering method which is compared to the Gaussian Mixture Model. The dataset used is residential, road access data and business points that already exist around the location. Both clustering methods are compared to the model evaluation method to determine the model with the best performance. The results show that the clustering method with the K-Means algorithm is the clustering model with the best performance. The results of the clustering resulted in 2 clusters, one of which is a cluster of potential business locations of 1041 locations. The conclusion of this study is that data mining clustering can be used to determine the optimal business location cluster. The results of this study can be recommended for business people to look for potential business locations, and for local governments to publicize potential business locations in order to attract investors from outside.
Afifah, A. N., Nurcahyawati, V., & Hananto, V. R. (2023). Analisis Clustering dan Pemetaan Sebaran Pelanggan Perusahaan Properti di Sidoarjo. Jurnal Edukasi Dan Penelitian Informatika, 9(3), 502–508. https://jurnal.untan.ac.id/index.php/jepin/article/view/67935
Aguilar, E. J., & Barbosa, V. C. (2023). Shape complexity in cluster analysis. PLoS ONE, 18(5 May), 1–19. https://doi.org/10.1371/journal.pone.0286312
Diana, A., Ariesta, A., Wibowo, A., & Risaychi, D. A. B. (2023). New Student Clusterization Based on New Student Admission Using Data Mining Method. Jurnal Pilar Nusa Mandiri, 19(1), 1–10. https://doi.org/10.33480/pilar.v19i1.4089
Faidah, D. Y., Hudzaifa, A. M., Theresia, N., & Widiantoro, C. E. (2024). Optimalisasi Strategi Pengelompokkan Potensi Padi Sebagai Solusi Efektif Kelangkaan Beras Di Jawa Barat. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 5(1), 529–537. https://doi.org/10.46306/lb.v5i1.592
Handayanna, F., & Sunarti, S. (2024). Penerapan Algoritma K-Means Untuk Mengelompokkan Kepadatan Penduduk Di Provinsi DKI Jakarta. Journal of Applied Computer Science and Technology, 5(1), 50–55. https://doi.org/10.52158/jacost.v5i1.477
Larose, C. D. (2014). Discovering Knowledge in data : An Introduction to Data Mining (2nd ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118874059
Lee, J., An, M., Kim, Y., & Seo, J. I. (2021). Optimal allocation for electric vehicle charging stations. Energies, 14(18), 1–9. https://doi.org/https://doi.org/10.3390/en14185781
Leenawong, C., & Chaikajonwat, T. (2023). Modified K-Means Clustering for Demand-Weighted Locations : A Thailand ’ s Convenience Store Franchise - Case Study. Science and Technology, 31(2), 655–670.
Lin, T. X., Wu, Z. H., & Pan, W. T. (2022). Optimal location of logistics distribution centres with swarm intelligent clustering algorithms. PLoS ONE, 17(8 August), 1–16. https://doi.org/10.1371/journal.pone.0271928
Manika, S., Karalidis, K., & Gospodini, A. (2021). Mechanism for the Optimal Location of a Business as a Lever for the Development of the Economic Strength and Resilience of a City. Urban Science, 5(4). https://doi.org/10.3390/urbansci5040070
Mohammadi, Z., Barzinpour, F., & Teimoury, E. (2023). A location-inventory model for the sustainable supply chain of perishable products based on pricing and replenishment decisions: A case study. PLoS ONE, 18(7 July), 1–29. https://doi.org/10.1371/journal.pone.0288915
Murad, A., Faruque, F., Naji, A., Tiwari, A., Qurnfulah, E., Rahman, M., & Dewan, A. (2024). Optimizing health service location in a highly urbanized city: Multi criteria decision making and P-Median problem models for public hospitals in Jeddah City, KSA. PLoS ONE, 19(1 January), 1–14. https://doi.org/10.1371/journal.pone.0294819
Ong, A. K. S., Prasetyo, Y. T., Esteller, A. J. D., Bruno, J. E., Lagorza, K. C. O., Oli, L. E. T., Chuenyindee, T., Thana, K., Persada, S. F., & Nadlifatin, R. (2023). Consumer preference analysis on the attributes of samgyeopsal Korean cuisine and its market segmentation: Integrating conjoint analysis and K-means clustering. PLoS ONE, 18(2 February), 1–23. https://doi.org/10.1371/journal.pone.0281948
Ozkaya, G., & Demirhan, A. (2022). Multi-Criteria Analysis of Sustainable Travel and Tourism Competitiveness in Europe and Eurasia. Sustainability (Switzerland), 14(22). https://doi.org/10.3390/su142215396
Puspitaningrum, Y., & Damanuri, A. (2022). Analisis Lokasi Usaha Dalam Meningkatkan Keberhasilan Bisnis Pada Grosir Berkah Doho Dolopo Madiun. Niqosiya: Journal of Economics and Business Research, 2(2), 289–304. https://doi.org/https://doi.org/10.21154/niqosiya.v2i2.977
Rahmattullah, R., Indwiarti, I., & Rohmawati, A. A. (2023). Clustering Harga Rumah: Perbandingan Model K-Means dan Gaussian Mixture Model. E-Proceeding Of Engineering, 10(3), 3441–3449. https://openlibrary.telkomuniversity.ac.id/pustaka/files/185889/jurnal_eproc/clustering-harga-rumah-perbandingan-model-k-means-dan-gaussian-mixture-model.pdf
Rohman, N., & Wibowo, A. (2024). Clustering of Popular Spotify Songs in 2023 Using K-Means Method and Silhouette Coefficient. Jurnal Pilar Nusa Mandiri, 20(1), 18–24. https://doi.org/10.33480/pilar.v20i1.4937
Santiastry, S., Apriandari, W., Informatika, T., Sukabumi, U. M., Sukabumi, K., Bayes, N., Inggris, T. B., & Sukabumi, U. M. (2024). PENERAPAN ALGORITMA NAIVE BAYES DAN METODE CRISP-DM DALAM. 8(5), 10432–10439.
Santosa, R. G., Chrismanto, A. R., & Kurniawan, E. (2020). JEPIN (Jurnal Edukasi dan Penelitian Informatika) Analisis Cluster Terhadap Karakteristik Mahasiswa Jalur Prestasi FTI UKDW. JEPIN, 6(1), 13–22. https://jurnal.untan.ac.id/index.php/jepin/article/view/37216
Sudiantini, D., Febrianti, A. S., Nugroho, A. A., Jannah, N. A., Candra, M., Edwar, R. A., & Aliyanti, T. (2023). Pengaruh Pengambilan Lokasi Usaha Terhadap Kesuksesan Berbisnis UMKM. Jurnal Ilmiah Multidisipline, 1(9), 334–338. https://doi.org/https://doi.org/10.5281/zenodo.10044851
Tambunan, H. B., Sitanggang, R. B., Mafruddin, M. M., Prasetyawan, O., Kensianesi, Istiqomah, Cahyo, N., & Tanbar, F. (2023). Initial location selection of electric vehicles charging infrastructure in urban city through clustering algorithm. International Journal of Electrical and Computer Engineering, 13(3), 3266–3280. https://doi.org/10.11591/ijece.v13i3.pp3266-3280
Wahidah, Z., & Utari, D. T. (2023). Comparison of K-Means and Gaussian Mixture Model in Profiling Areas By Poverty Indicators. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(2), 0717–0726. https://doi.org/10.30598/barekengvol17iss2pp0717-0726
Wahyu, A., & Rushendra, R. (2022). Klasterisasi Dampak Bencana Gempa Bumi Menggunakan Algoritma K-Means di Pulau Jawa. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 8(1), 174. https://doi.org/10.26418/jp.v8i1.52260
Wamulkan A.S, U. A. H., Utami, N. W., & Anggara, I. N. Y. (2024). Bali Tourist Visits Clustered Via Tripadvisor Reviews Using K-Means Algorithm. Jurnal Pilar Nusa Mandiri, 19(2), 117–124. https://doi.org/10.33480/pilar.v19i2.4571
Wang, X., Shao, C., Xu, S., Zhang, S., Xu, W., & Guan, Y. (2020). Study on the location of private clinics based on K-means clustering method and an integrated evaluation model. IEEE Access, 8(1), 23069–23081. https://doi.org/10.1109/ACCESS.2020.2967797
Wang, X., Shen, A., Hou, X., & Tan, L. (2022). Research on cluster system distribution of traditional fort-type settlements in Shaanxi based on K-means clustering algorithm. PLoS ONE, 17(3 March). https://doi.org/10.1371/journal.pone.0264238
Wongoutong, C. (2024). The impact of neglecting feature scaling in k-means clustering. PLoS ONE, 19(12), 1–19. https://doi.org/10.1371/journal.pone.0310839
Wu, J., Liu, X., Li, Y., Yang, L., Yuan, W., & Ba, Y. (2022). A Two-Stage Model with an Improved Clustering Algorithm for a Distribution Center Location Problem under Uncertainty. Mathematics, 10(14). https://doi.org/10.3390/math10142519
Yang, C., Wen, H., Jiang, D., Xu, L., & Hong, S. (2022). Analysis of college students’ canteen consumption by broad learning clustering: A case study in Guangdong Province, China. PLoS ONE, 17(10 October), 1–18. https://doi.org/10.1371/journal.pone.0276006
You, J., Li, Z., & Du, J. (2023). A new iterative initialization of EM algorithm for Gaussian mixture models. PLoS ONE, 18(4 April), 1–17. https://doi.org/10.1371/journal.pone.0284114
Yu, W. (2022). Robust competitive facility location model with uncertain demand types. PLoS ONE, 17(8 August), 1–22. https://doi.org/10.1371/journal.pone.0273123
Copyright (c) 2025 Dian Erdiansyah, Indra Nugraha Abdullah, Amandus Jong Tallo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.