






Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Central Java Province comprises 35 regencies/cities with diverse welfare characteristics. These variations present challenges for the government in formulating targeted development policies. This study aims to group regions in Central Java based on welfare indices to support more effective policy planning. The Agglomerative Hierarchical Clustering method with the Average Linkage approach is applied to cluster the regions based on three attributes: Human Development Index, Uninhabitable Houses, and Economic Growth Rate. Data were obtained from the Central Java Provincial Social Service and the official website of the Central Statistics Agency (BPS) and processed using the proposed method. Experimental results indicate three clusters with proportions: 32 regions in cluster 1 (91.4%), 2 regions in cluster 2 (5.7%), and 1 region in cluster 3 (2.9%). Regions with higher welfare dominate the first cluster, while the second and third clusters include regions facing more significant welfare challenges. Clustering results were evaluated using the Silhouette Score (0.535) and Davies-Bouldin Index Score (0.610), demonstrating that the applied method effectively grouped regions based on the specified attributes. The findings of this study are anticipated to lay the groundwork for more directed and effective development policies.
Agustina, R. E., & Yahya, A. (2022). Pembangunan Desa Dan Tingkat Kemiskinan Kabupaten Di Indonesia. Jurnal Litbang Sukowati : Media Penelitian Dan Pengembangan, 6(1), 98–108. https://doi.org/10.32630/sukowati.v6i1.329
Asyfani, Y., Manfaati Nur, I., Fathoni Amri, I., Yunanita, N., Hikmah Nur Rohim, F., Aura Hisani, Z., & Anggun Lestari, F. (2024). Pengelompokan Kabupaten/Kota di Jawa Tengah Berdasarkan Kepadatan Penduduk Menggunakan Metode Hierarchical Clustering Info Artikel. Journal of Data Insights, 2(1), 1–8.
Boyko, N. I., & Tkachyk, O. A. (2023). Hierarchical clustering algorithm for dendrogram construction and cluster counting. Informatics and Mathematical Methods in Simulation, 13(1–2), 5–15. https://doi.org/10.15276/imms.v13.no1-2.5
Dalimunthe, M. (2021). Mengatasi Kemiskinan dalam Islam (Kajian Al-Quran dan Al-Hadis). Journal of Islamic Law El Madani, 1(1). http://journal.marwah-madani-riau.id/index.php/JILE/article/view/8
Dinata, E., & Syaputra, H. (2020, September 23). Penerapan Metode Agglomerativ Hirarchical Clusturing untuk Klasifikasi Dokumen Skripsi. https://www.semanticscholar.org/paper/PENERAPAN-METODE-AGGLOMERATIV-HIRARCHICAL-UNTUK-Dinata-Syaputra/ed25f7bb2e17200bc58c5d8089585519b3f9609c
Fuady, M., Fuady, M. R. F., & Aulia, F. (2022). Kemiskinan Multi Dimensi dan Indeks Pembangunan Manusia di Indonesia. Tataloka, 24(4), 330–337. https://doi.org/10.14710/tataloka.24.4.330-337
Hasan, Y. (2024). Pengukuran Silhouette Score dan Davies-Bouldin Index pada Hasil Cluster K-Means Dan DBSCAN. JITET(Jurnal Informatika Dan Teknik Elektro Terapan), 06(01), 60–74.
Hilmawan, R., Aprianti, Y., Vo, D. T. H., Yudaruddin, R., Bintoro, R. F. A., Fitrianto, Y., & Wahyuningsih, N. (2023). Rural development from village funds, village-owned enterprises, and village original income. Journal of Open Innovation: Technology, Market, and Complexity, 9(4), 100159.https://doi.org/10.1016/j.joitmc.2023.100159
Karmanita, D., Defit, S., & Sumijan. (2024). Metode K-Means dalam Mengukur Tingkat Pemahaman Materi Mata Kuliah dan Penilaian Mahasiswa Prodi Informatika. Jurnal KomtekInfo, 101(3), 132–138. https://jkomtekinfo.org/ojs
Larasati, N. F., Fauziyyah, N., & Anugrah, R. (2024). Analisis Ketimpangan Kemiskinan di Provinsi Jawa Tengah dengan Metode Agglomerative Hierarchical Clustering. Seminar Nasional Pendidikan Matematika Dan Matematika, 10. https://doi.org/10.21831/pspmm.v10i2.342
Muflihan, Y., Retnawati, H., & Kristian, A. (2022). Analisis cluster dengan metode hierarki untuk pengelompokan sekolah menengah atas berdasarkan rapor mutu sekolah di Kabupaten Nagan Raya. Measurement In Educational Research (Meter), 2(1), 22–33. https://doi.org/http://dx.doi.org/10.33292/meter.v2i1.155
Nikum, B., & Yuliansyah, H. (2024). Evaluation of K-Means Clustering Using Silhouette Score Method on Customer Segmentation. ILKOM Jurnal Ilmiah, 16(3), 330–342.
Olexandr TKACHYK, L. P. N. U. (2023). Applying Data Clustering Methods for Creating Targeting User Groups for Real Estate. Herald of Khmelnytskyi National University. Technical Sciences, 319(2), 300–207. https://doi.org/10.31891/2307-5732-2023-319-1-300-307
Pradana, M. G., & Ha, H. T. (2021). Maximizing Strategy Improvement in Mall Customer Segmentation using K-means Clustering. Journal of Applied Data Sciences, 2(1), 19–25. https://doi.org/10.47738/jads.v2i1.18
Provinsi Jawa Tengah, B. P. S. (2024). Provinsi Jawa Tengah Dalam Angka 2024 (Tahunan). https://jateng.bps.go.id/id/publication/2024/02/28/980d120f5be18d6400c48b16/provinsi-jawa-tengah-dalam-angka-2024.html
Rahmawati, N., Prasetyanto, P. K., & Islami, F. S. (2022). Pengaruh Indeks Pembangunan Manusia (Ipm), Upah Minimum Regional (UMR), Dan Tingkat Pengangguran Terbuka Terhadap Jumlah Penduduk Miskin Di Indonesia Tahun 2017-2021 (Studi Kasus 34 Provinsi Di Indonesia). Convergence: The Journal of Economic Development, 4(1), 19–31. https://doi.org/10.33369/convergencejep.v4i1.23358
Repiská, R., Grisáková, N., & Štetka, P. (2022). Hierarchical Clustering Based On International Sustainability Indices Of Eu Countries 1 Introduction. EKONOMICKÉ ROZHĽADY – ECONOMIC REVIEW. 51(2), 149–170. http://dx.doi.org/10.53465/ER.2644-7185.2022.2.149-170
Sharma, M. M. (2022). Comparison Of Clustering Algorithms : A Practical Approach. OORJA, 20(1), 64–74.
Thakare, V. S., & Sonawane, J. S. (2023). An Effective Unsupervised Machine Learning Technique and Research Challenges. International Journal of Science and Research (IJSR), 12(5), 2141–2143. https://doi.org/10.21275/SR23523214829
Tripathi, S., Muhr, D., Brunner, M., Jodlbauer, H., Dehmer, M., & Emmert-Streib, F. (2021). Ensuring the Robustness and Reliability of Data-Driven Knowledge Discovery Models in Production and Manufacturing. Frontiers in Artificial Intelligence, 4(June), 1–20. https://doi.org/10.3389/frai.2021.576892
Wardani, A. N. K., Pasya, D. J., & Juliono, J. (2023). Pengaruh Indeks Pembangunan Manusia (IPM) Terhadap Tingkat Kemiskinan di Provinsi Lampung. Jurnal Ilmiah Ekonomi Manajemen Jurnal Ilmiah Multi Science, 14(01), 06–11
Zulkifilu, M., & Yasir, A. (2022). About Some Data Precaution Techniques for K-Means Clustering Algorithm. UMYU Scientifica. 1(1), 12–19. https://doi.org/10.56919/usci.1122.003.
Copyright (c) 2025 Raafi Kurnia Desita, Amiq Fahmi, Asih Rohmani, MY. Teguh Sulistyono
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.