Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Penerapan teknologi informas dalan dunia pendidikan juga dapat menghasilkan data yang berlimpah mengenai data mahasiswa dan nilai pembelajaran yang dihasilkan. Seperti nilai matakuliah unggulan tersebut yang sangat mempengaruhi jumlah ipk dan kelulusan karna jika salah satu matakuliah unggulan seperti Web Programing tersebut mendapatkan nilai D maka mahasiswa tersebut tidak dapat melakukan pendaftaran Tugas akhir atau Skripsi. Salah satunya caranya adalah dengan melakukan klasifikasi daa nilai mahasiswa untuk mengetahui nilai matakuliah unggulan apa saja yang paling krusial dari semester pertama. Neural Network lebih flesksibel yaitu tidak ada batasan apriori yang dikenakan bila dibandingkan dengan pemodelan statistic klasik, sehingga Neural Network cenderung memberikan prediksi yang akurat.
Azis, M. A., & Hermawan, A. (2019). Laporan Akhir Penelitian Mandiri. Jakarta.
Gorunescu, F. (2011). Data Mining: Concepts, Models and Techniques (Intelligent Systems Reference Library).
Moro, S., Cortez, P., & Rita, P. (2014). A data-driven approach to predict the success of bank telemarketing. Decision Support Systems, 62, 22–31. https://doi.org/10.1016/j.dss.2014.03.001
Moro, S., Laureano, R. M. S., & Cortez, P. (2011). Using Data Mining for Bank Direct Marketing: An application of the CRISP-DM methodology. 25th European Simulation and Modelling Conference- ESM’2011, (Figure 1), 117–121.
Muzakkir, I., Syukur, A., & Dewi, I. N. (2014). PENINGKATAN AKURASI ALGORITMA BACKPROPAGATION DENGAN SELEKSI FITUR PARTICLE SWARM OPTIMIZATION DALAM PREDIKSI PELANGGAN TELEKOMUNIKASI YANG HILANG. Pseudocode, 1(1), 1–10. https://doi.org/10.33369/PSEUDOCODE.1.1.1-10
Ridwansyah, R., & Purwaningsih, E. (2018). PARTICLE SWARM OPTIMIZATION UNTUK MENINGKATKAN AKURASI PREDIKSI PEMASARAN BANK. Jurnal Pilar Nusa Mandiri, 14(1), 83–88. https://doi.org/10.33480/PILAR.V14I1.94
Rohman, A. (2015). Model Algoritma K-Nearest Neighbor (K-Nn) Untuk Prediksi Kelulusan Mahasiswa. Neo Teknika, 1(1). https://doi.org/10.1017/CBO9781107415324.004
Copyright (c) 2019 Mochammad Abdul Azis, Agung Fazriansyah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.