ANALISIS TEKSTUR PADA CITRA IRIS MATA MENGGUNAKAN ALGORITMA GRAY LEVEL CO-OCCURENCY MATRIX

  • Asti Herliana Teknik Informatika Universitas BSI Bandung
  • Toni Arifin Teknik Informatika Universitas BSI Bandung
Keywords: Texture Analysis, Gray Level Co-occurrence Matrix, Iris

Abstract

According to data from the ministry of health, with the high intensity of use the gadget nowadays, therefore the number of people with eye disease is increasing. To overcome increase suffers of eye disease, it takes need early detection for who suffers potentially eye disease so that handling and prevention of blindness from eye disease effect can be immediately. The process detection of eye disease can be see in iris, there are several disease can be seen in iris among there are diabetic retinopathy and glaucoma. This research present texture analysis for iris images, the method is used GLCM (Gray Level Co-occurency Matrix) which is implemented using Matlab, and using 5 parameters namely contrast, correlation, energy, homogeneity and entropy. Process analysis texture is developed with preprocessing technique, the result of texture in images data iris can be recognized and produce the dataset of result from feature extraction with GLCM (Gray Level Co-occurency Matrix).

Downloads

Download data is not yet available.

References

Anantrasirichai, N., Achim, A., Morgan, J. E., Erchova, I., & Nicholson, L. (2013). SVM-based texture classification in Optical Coherence Tomography. In 2013 IEEE 10th International Symposium on Biomedical Imaging (pp. 1332–1335). San Francisco: IEEE. https://doi.org/10.1109/ISBI.2013.6556778

Annu, N., & Justin, J. (2013). Automated classification of glaucoma images by wavelet energy features. International Journal of Engineering and Technology, 5(2), 1716–1721.

Arifin, T. (2015). Implementasi Metode K-Nearest Neighbor Untuk Klasifikasi Citra Sel Pap Smear Menggunakan Analisis Tekstur Nukleus. Jurnal Informatika, 2(1), 287–295. https://doi.org/10.31311/ji.v2i1.83

Arifin, T., & Herliana, A. (2018). Optimasi Metode Klasifikasi dengan Menggunakan Particle Swarm Optimization untuk Identifikasi Penyakit Diabetes Retinopathy. Khazanah Informatika, 4(2), 77–81.

Arifin, T., Riana, D., & Hapsari, G. I. (2014). Klasifikasi Statistikal Tekstur Sel Pap Smear Dengan Decesion Tree. Jurnal Informatika, 1(1). https://doi.org/10.31311/ji.v1i1.180

Biro Komunikasi dan Pelayanan Masyarakat. (2018). Indonesia Perlu Waspadai Gangguan Penglihatan. Retrieved from http://www.depkes.go.id/article/view/18110100003/indonesia-perlu-waspadai-gangguan-penglihatan.html

Bron, J., C, C., & A, B. (2006). Lecture Notes Oftalmologi (9th ed.). Jakarta: Erlangga Medical Series.

Dobe, M., & Machala, L. (2012). Iris Data Base. Retrieved from http://phoenix.inf.upol.cz/iris/

Herliana, A., & Arifin, T. (2019). Laporan Penelitian Akhir 2019. Bandung.

Herliana, A., Arifin, T., Susanti, S., & Hikmah, A. B. (2018). Feature Selection of Diabetic Retinopathy Disease Using Particle Swarm Optimization and Neural Network. 2018 6th International Conference on Cyber and IT Service Management (CITSM), (Citsm), 1–4. https://doi.org/10.1109/CITSM.2018.8674295

Mesecan, I., Eleyan, A., & Karlik, B. (2013). Sift-based iris recognition using sub-segments. 2013 The International Conference on Technological Advances in Electrical, Electronics and Computer Engineering, TAEECE 2013, 350–353. https://doi.org/10.1109/TAEECE.2013.6557299

Pusat Komunikasi Publik Sekretariat Jenderal Kementerian Kesehatan RI. (2010). Gangguan penglihatan masih menjadi masalah kesehatan. Retrieved from http://www.depkes.go.id/pdf.php?id=845

Situmorang, G. T., Widodo, A. W., & Rahman, M. A. (2019). Penerapan Metode Gray Level Cooccurence Matrix ( GLCM ) untuk Ekstraksi Ciri pada Telapak Tangan. Jurnal Pengembangan Teknlogi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 3(5), 4710–4716. Retrieved from http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5322

Widodo, R., Widodo, A. W., & Supriyanto, A. (2018). Pemanfaatan Ciri Gray Level Co-Occurrence Matrix ( GLCM ) Citra Buah Jeruk Keprok ( Citrus reticulata Blanco ) untuk Klasifikasi Mutu. Jurnal Pengembangan Teknlogi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(11), 5769–5776. Retrieved from http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/3420

Published
2019-08-17
How to Cite
Herliana, A., & Arifin, T. (2019). ANALISIS TEKSTUR PADA CITRA IRIS MATA MENGGUNAKAN ALGORITMA GRAY LEVEL CO-OCCURENCY MATRIX. Jurnal Pilar Nusa Mandiri, 15(2), 183-188. https://doi.org/10.33480/pilar.v15i2.680