KLASIFIKASI SMS SPAM MENGGUNAKAN SUPPORT VECTOR MACHINE

  • Agus Setiyono STMIK Nusa Mandiri
  • Hilman F Pardede Pusat Penelitian Infomatika LIPI & STMIK Nusa Mandiri
Keywords: Multinomial Naive Bayes, SMS Spam Detection, Support Vector Machine

Abstract

It is now common for a cellphone to receive spam messages. Great number of received messages making it difficult for human to classify those messages to Spam or no Spam.  One way to overcome this problem is to use Data Mining for automatic classifications. In this paper, we investigate various data mining techniques, named Support Vector Machine, Multinomial Naïve Bayes and Decision Tree for automatic spam detection. Our experimental results show that Support Vector Machine algorithm is the best algorithm over three evaluated algorithms. Support Vector Machine achieves 98.33%, while Multinomial Naïve Bayes achieves 98.13% and Decision Tree is at 97.10 % accuracy.

Downloads

Download data is not yet available.

References

Almeida, T. A., Silva, T. P., Santos, I., & Gómez Hidalgo, J. M. (2016). Text normalization and semantic indexing to enhance Instant Messaging and SMS spam filtering. Knowledge-Based Systems, 108(November 2017), 25–32. https://doi.org/10.1016/j.knosys.2016.05.001

Amrizal, V. (2018). Penerapan Metode Term Frequency Inverse Document Frequency (Tf-Idf) Dan Cosine Similarity Pada Sistem Temu Kembali Informasi Untuk Mengetahui Syarah Hadits Berbasis Web (Studi Kasus: Hadits Shahih Bukhari-Muslim). Jurnal Teknik Informatika, 11(2), 149–164. https://doi.org/10.15408/jti.v11i2.8623

Andri, Yesi Novaria Kunang, S. M. (2013). Implementasi Teknik Data Mining Untuk Memprediksi Tingkat Kelulusan, 2013(June 2016), 56–63. https://doi.org/10.13140/RG.2.1.4212.1845

Andriani, A. (2013). Sistem Pendukung Keputusan Berbasis Decision Tree Dalam Pemberian Beasiswa Studi Kasus : Amik “ Bsi Yogyakarta .” Seminar Nasional Teknologi Informasi Dan Komunikasi 2013 (SENTIKA 2013), 2013(Sentika), 163–168.

Kim, S. E., Jo, J. T., & Choi, S. H. (2015). SMS Spam filterinig using keyword frequency ratio. International Journal of Security and Its Applications, 9(1), 329–336. https://doi.org/10.14257/ijsia.2015.9.1.31

Lidya, S. K., Sitompul, O. S., & Efendi, S. (2015). Sentiment Analysis Pada Teks Bahasa Indonesia Menggunakan Support Vector Machine ( Svm ). Seminar Nasional Teknologi Dan Komunikasi 2015, 2015(Sentika), 1–8. https://doi.org/10.1016/j.eswa.2013.08.047

Marta, T., Yuridis, E., Butar, B., & Fauzi, M. A. (2019). Penentuan Rating Review Film Menggunakan Metode Multinomial Naïve Bayes Classifier dengan Feature Selection berbasis Chi-Square dan Galavotti-Sebastiani-Simi Coefficient. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 3(1), 447–453.

Ning, B., Junwei, W., & Feng, H. (2019). Spam message classification based on the naïve Bayes classification algorithm. IAENG International Journal of Computer Science, 46(1).

Pratama, A., Wihandika, R. C., & Ratnawati, D. E. (2018). Implementasi Algoritme Support Vector Machine ( SVM ) untuk Prediksi Ketepatan Waktu Kelulusan Mahasiswa. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer E-ISSN, 2548, 964X, 2(4), 1704–1708.

Sajedi, H., Zarghami Parast, G., & Akbari, F. (2016). To cite this article: Hedieh Sajedi, Golazin Zarghami Parast, Fatemeh Akbari. SMS Spam Filtering Using Machine Learning Techniques: A Survey. Machine Learning Research, 1(1), 1–14. https://doi.org/10.11648/j.mlr.20160101.11

Setiyono, A., & Pardede, H. F. (2019). Laporan Akhir Penelitian: Klasifikasi Sms Spam Menggunakan Support Vector Machine. Jakarta.

Utama, T. D., Sihwi, S. W., & Doewes, A. (2014). Implementasi Algoritma Iterative Dichotomiser 3 Pada Penyeleksian Program Mahasiswa Wirausaha Uns. Jurnal Itsmart, 3(2), 74–82.

Zainal, K., Sulaiman, N. F., & Jali, M. Z. (2015). An Analysis of Various Algorithms For Text Spam Classification and Clustering Using RapidMiner and Weka. International Journal of Computer Science and Information Security (IJCSIS), 13(3), 66–74.

Published
2019-09-08
How to Cite
Setiyono, A., & Pardede, H. (2019). KLASIFIKASI SMS SPAM MENGGUNAKAN SUPPORT VECTOR MACHINE. Jurnal Pilar Nusa Mandiri, 15(2), 275-280. https://doi.org/10.33480/pilar.v15i2.693