OPTIMASI ALGORITMA NEURAL NETWORK DENGAN ALGORITMA GENETIKA DAN PARTICLE SWARM OPTIMIZATION UNTUK MEMPREDIKSI HASIL PEMILUKADA

Authors

  • Mohammad Badrul STMIK Nusa Mandiri

DOI:

https://doi.org/10.33480/pilar.v13i1.7

Keywords:

Algoritma Genetika, Algoritma neural network, Particle Swarm Optimization, Pemilu

Abstract

Indonesia has one of the islands spread from Sabang to Merauke. State of Indonesia which consists of several islands gave birth to a
wide variety of ethnic and cultural diversity. State of Indonesia which consists of several islands divided into 34 provinces. Indonesia is one country
that adheres to the democratic system in the world. to achieve this goal, one of which is seen at the democratic party to choose the future leaders
who will represent the people in parliament. Elections were held in Indonesia is to choose the heads of both the president and vice president,
members of Parliament, Parliament and Council. Research relating to the election had been conducted by researchers is using decision tree
method or by using a neural network. The method used was limited without doing optimization method for the algorithm. In this study, researchers will conduct research focusing on the optimization using genetic algorithm optimization and particle swarm optimization with the aid of neural network algorithms. After testing the two models of neural network algorithms and genetic algorithms are the results obtained by the neural network algorithm  ptimization particle swarm optimization algoritmasi accuracy value amounted to 98.85% and the AUC value of 0.996. While the neural network algorithm with genetic algorithm optimization accuracy values of 93.03% and AUC value of 0.971

Downloads

Download data is not yet available.

Author Biography

Mohammad Badrul, STMIK Nusa Mandiri

Penulis  adalah  Dosen  Tetap di STMIK Nusa Mandiri Jakarta. Penulis Kelahiran di Bangkalan 01 Januari 1984. Penulis menyelesaikan Program Studi Strata 1 (S1) di    Kampus    STMIK  Nusa Mandiri Prodi Sistem Informasi   dengan gelar S.Kom pada tahun 2009 dan menyelesaikan progarm Srata 2 (S2) di Kampus yang sama dengan   Prodi   ilmu   Komputer   dengan   gelar M.Kom  pada tahun  2012. Selain mengajar, Penulis juga aktif dalam membimbing mahasiswa yang sedang melakukan penelitian khususnya di tingkat Strata 1 dan penulis juga terlibat dalam tim konsorsium di Jurusan Teknik Informatika STMIK Nusa Mandiri untuk penyusunan bahan ajar. Saat ini penulis memiliki Jabatan Fungsional Asisten ahli di kampus STMIK Nusa Mandiri Jakarta. Penulis tertarik dalam bidang kelimuan Data  mining,  Jaringan  komputer,  Operating sistem  khususnya  open  source,  Database, Software engineering dan Research Metode.

References

Astuti, E. D. (2009). Pengantar Jaringan Saraf Tiruan. Wonosobo: Star Publishing.

Borisyuk, R., Borisyuk, G., Rallings, C., & Thrasher, M. (2005). Forecasting the 2005 General Election:A Neural Network Approach. The British Journal of Politics & International Relations Volume 7, Issue 2 , 145-299.

Choi, J. H., & Han, S. T. (1999). Prediction of Elections Result using Descrimination of Non-Respondents:The Case of the 1997 Korea Presidential Election.

Dawson, C. W. (2009). Projects in Computing and Information System A Student's Guide. England: Addison-Wesley.

Gorunescu, F. (2011). Data Mining Concepts, Model and Technique. Berlin: Springer.

Han, J., & Kamber, M. (2007). Data Mining Concepts and Technique. Morgan Kaufmann publisher

Kothari, C. R. (2004). Research Methology methodes and Technique. India: New Age Interntional.

Kusrini, & Luthfi, E. T. (2009). Algoritma Data mining. Yogyakarta: Andi.

Larose, D. T. (2005). Discovering Knowledge in Data. Canada: Wiley Interscience.

Maimon, O., & Rokach, L. , 2010, Data Mining and Knowledge Discovery Handbook. London: Springer.

Moscato, P., Mathieson, L., Mendes, A., & Berreta, R. (2005). The Electronic Primaries:Prediction The U.S. Presidential Using Feature Selection with safe data. ACSC '05 Proceeding of the twenty-eighth Australian conference on Computer Science Volume 38 , 371-379.

Myatt, G. J. (2007). Making Sense of Data A Practical Guide to Exploratory Data Analysis and Data Mining. New Jersey: A John Wiley & Sons, inc., publication.

Nagadevara, & Vishnuprasad. (2005). Building Predictive models for election result in india an application of classification trees and neural network. Journal of Academy of Business and Economics Volume 5 .

Park, T. S., Lee, J. H., & Choi, B. , 2009, Optimization for Artificial Neural Network with Adaptive inertial weight of particle swarm optimization. Cognitive Informatics, IEEE International Conference , 481-485.

Purnomo, M. H., & Kurniawan, A. (2006). Supervised Neural Network. Suarabaya: Garaha Ilmu.

Rigdon, S. E., Jacobson, S. H., Sewell, E. C., & Rigdon, C. J. (2009). A Bayesian Prediction Model For the United State Presidential Election. American Politics Research volume.37 , 700-724.

Salappa, A., Doumpos, M., & Zopounidis, C. , 2007, Feature Selection Algorithms in Classification Problems: An Experimental Evaluation. Systems Analysis, Optimization and Data Mining in Biomedicine , 199-212.

Santoso, T. (2004). Pelanggaran pemilu 2004 dan penanganannya. Jurnal demokrasi dan Ham , 9-29.

Sardini, N. H. (2011). Restorasi penyelenggaraan pemilu di Indonesia. Yogyakarta: Fajar Media Press.

Shukla, A., Tiwari, R., & Kala, R. (2010). Real Life Application of Soft Computing. CRC Press.

Undang-Undang RI No.10. (2008).

Vercellis, C. (2009). Business Intelligence : Data Mining and Optimization for Decision Making. John Wiley & Sons, Ltd.

Downloads

Published

2017-03-15

How to Cite

Badrul, M. (2017). OPTIMASI ALGORITMA NEURAL NETWORK DENGAN ALGORITMA GENETIKA DAN PARTICLE SWARM OPTIMIZATION UNTUK MEMPREDIKSI HASIL PEMILUKADA. Jurnal Pilar Nusa Mandiri, 13(1), 1–11. https://doi.org/10.33480/pilar.v13i1.7