Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Saat ini usaha waralaba di Indonesia memiliki daya tarik yang relatif tinggi. Namun, para pelaku usaha banyak juga yang mengalami kegagalan. Bagi seseorang yang ingin memulai usaha perlu mempertimbangkan sentimen masyarakat terhadap usaha waralaba. Meskipun demikian, tidak mudah untuk melakukan analisis sentimen karena banyaknya jumlah percakapan di Twitter terkait usaha waralaba dan tidak terstruktur. Tujuan penelitian ini adalah melakukan komparasi akurasi metode Neural Network, K-Nearest Neighbor, Naïve Bayes, Support Vector Machine, dan Decision Tree dalam mengekstraksi atribut pada dokumen atau teks yang berisi komentar untuk mengetahui ekspresi didalamnya dan mengklasifikasikan menjadi komentar positif dan negatif. Penelitian ini menggunakan data realtime dari tweets pada Twitter. Selanjutnya mengolah data tersebut dengan terlebih dulu membersihkannya dari noise dengan menggunakan Phyton. Hasil pengujian dengan confusion matrix diperoleh nilai akurasi Neural Network sebesar 83%, K-Nearest Neighbor sebesar 52%, Support Vector Machine sebesar 83%, dan Decision Tree sebesar 81%. Penelitian ini menunjukkan metode Support Vector Machine dan Neural Network paling baik untuk mengklasifikasikan komentar positif dan negatif terkait usaha waralaba.
Attabi, A. W., Muflikhah, L., & Fauzi, M. A. (2018). Penerapan Analisis Sentimen untuk Menilai Suatu Produk pada Twitter Berbahasa Indonesia dengan Metode Naïve Bayes Classifier dan Information Gain. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(11), 4548–4554.
Fathurahman, M. F., Windarti, A., & Purwanto, I. (2018). Pengaruh Value dan Physical Benefit Produk Waralaba Terhadap Kepuasan Konsumen. Journal of Applied Business and Economics, 4(4), 305–319.
Imanuwelita, V., Putri, R. R. M., & Amalia, F. (2018). Penentuan Kelayakan Lokasi Usaha Franchise Menggunakan Metode AHP dan VIKOR. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(1), 122–132.
Ling, J., Kencana, I. P. E., & Oka, T. B. (2014). Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Dengan Seleksi Fitur Chi Square. E-Jurnal Matematika, 3(3), 92. https://doi.org/10.24843/mtk.2014.v03.i03.p070
Mardiana, T., Syahreva, H., & Tuslaela, T. (2019). Laporan Akhir Penelitian: Komparasi Metode Klasifikasi Pada Analisis Sentimen Usaha Waralaba Berdasarkan Data Twitter. Jakarta.
Muthia, D. A. (2017). Analisis Sentimen Pada Review Restoran Dengan Teks Bahasa Indonesia Mengunakan Algoritma Naive Bayes. Jurnalilmu Pengetahuan Dan Teknologi Komputer, 2(2), 39–45. https://doi.org/10.1515/HUMOR.2006.009
Nurhuda, F., Sihwi, S. W., & Doewes, A. (2013). Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Teknologi & Informasi ITSmart, 2(2), 35–42. https://doi.org/10.20961/its.v2i2.630
Romadloni, N. T., Santoso, I., & Budilaksono, S. (2019). Perbandingan Metode Naive Bayes , Knn Dan Decision Tree Terhadap Analisis Sentimen Transportasi Krl. Jurnal IKRA-ITH Informatika, 3(2), 1–9.
Vinodhini, G., & Chandrasekaran, R. M. (2016). A comparative performance evaluation of neural network based approach for sentiment classification of online reviews. Journal of King Saud University - Computer and Information Sciences, 28(1), 2–12. https://doi.org/10.1016/j.jksuci.2014.03.024
Widaningsih, S., & Suheri, A. (2018). Klasifikasi Jurnal Ilmu Komputer Berdasarkan Pembagian Web of Science Dengan Menggunakan Text Mining. Seminar Nasional Teknologi Informasi Dan Komunikasi 2018 (SENTIKA 2018), 2018(Sentika), 23–24.
Copyright (c) 2019 Tati Mardiana, Hafiz Syahreva, Tuslaela Tuslaela
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.