COMPARISON LINEAR REGRESSION AND RANDOM FOREST MODELS FOR PREDICTION OF UNDERGROUND DROUGHT LEVELS IN FOREST FIRES

  • Nur Alamsyah Universitas Informatika Dan Bisnis Indonesia
  • Budiman Budiman Universitas Informatika Dan Bisnis Indonesia
  • Titan Parama Yoga Universitas Informatika Dan Bisnis Indonesia
  • R Yadi Rakhman Alamsyah Universitas Informatika Dan Bisnis Indonesia
Keywords: forest fire, linear regression, machine learning, random forest, underground drought

Abstract

The increase in forest fires poses a significant risk due to its impact on underground dryness, which can cause long-term environmental damage and challenge fire suppression efforts. This research aims to develop a prediction model for underground drought levels in the context of forest fires using machine learning techniques. The methodology used in this research follows the CRISP-DM (Cross-Industry Standard Process for Data Mining) framework, which includes the stages of business understanding, data understanding, data preparation, modeling, evaluation, and deployment. This study analyzes a forest fire dataset, applies encoder labels to transform categorical variables, and uses linear regression and random forest models to predict underground drought levels. The goal is to create a predictive model that can help inform wildfire risk management strategies by anticipating underground drought levels. The results showed that the random forest model achieved higher prediction accuracy than the linear regression, with an R-squared value of 0.97. This suggests that the random forest model is a more robust tool for predicting underground drought levels, providing valuable insights for forest fire management. This research contributes to the understanding of underground drought levels, aiding the development of effective wildfire risk management strategies.

References

Alamsyah, N., & Kurniati, A. P. (2023, August). A Novel Airfare Dataset To Predict Travel Agent Profits Based On Dynamic Pricing. In 2023 11th International Conference on Information and Communication Technology (ICoICT) (pp. 575-581). IEEE https://ieeexplore.ieee.org/abstract/document/10262694

Alamsyah, N. (2023). Analisis Perbandingan Sentimen Pengguna Twitter Terhadap Layanan Salah Satu Provider Internet Di Indonesia Menggunakan Metode Klasifikasi. TEMATIK, 10(2), 246-251. https://jurnal.plb.ac.id/index.php/tematik/article/view/1578

Chen, L., Han, B., Wang, X., Zhao, J., Yang, W., & Yang, Z. (2023). Machine learning methods in weather and climate applications: A survey. Applied Sciences, 13(21), 12019. https://www.mdpi.com/2076-3417/13/21/12019

Dami, S., & Yahaghizadeh, M. (2021). Predicting cardiovascular events with deep learning approach in the context of the internet of things. Neural Computing and Applications, 33, 7979-7996. https://link.springer.com/article/10.1007/s00521-020-05542-x

Dang, T. K., & Nguyen, H. H. X. (2022). A hybrid approach using decision tree and multiple linear regression for predicting students’ performance based on learning progress and behavior. SN Computer Science, 3(5), 393. https://link.springer.com/article/10.1007/s42979-022-01251-5

Kala, C. P. (2023). Environmental and socioeconomic impacts of forest fires: A call for multilateral cooperation and management interventions. Natural Hazards Research, 3(2), 286-294 https://www.sciencedirect.com/science/article/pii/S266659212300032X

Kansal, M., Singh, P., Shukla, S., & Srivastava, S. (2023, September). A Comparative Study of Machine Learning Models for House Price Prediction and Analysis in Smart Cities. In International Conference on Electronic Governance with Emerging Technologies (pp. 168-184). Cham: Springer Nature Switzerland. https://link.springer.com/chapter/10.1007/978-3-031-43940-7_14

Lee, H., Wang, J., & Leblon, B. (2020). Using linear regression, random forests, and support vector machine with unmanned aerial vehicle multispectral images to predict canopy nitrogen weight in corn. Remote Sensing, 12(13), 2071.. https://www.mdpi.com/2072-4292/12/13/2071

Mallikharjuna Rao, K., Saikrishna, G., & Supriya, K. (2023). Data preprocessing techniques: emergence and selection towards machine learning models-a practical review using HPA dataset. Multimedia Tools and Applications, 82(24), 37177-37196. https://link.springer.com/article/10.1007/s11042-023-15087-5

Narita, D., Gavrilyeva, T., & Isaev, A. (2021). Impacts and management of forest fires in the Republic of Sakha, Russia: A local perspective for a global problem. Polar Science, 27, 100573. https://www.sciencedirect.com/science/article/pii/S1873965220300827

Öztürk, O. B., & Başar, E. (2022). Multiple linear regression analysis and artificial neural networks based decision support system for energy efficiency in shipping. Ocean Engineering, 243, 110209.. https://www.sciencedirect.com/science/article/abs/pii/S0029801821015249

Parente, J., Girona-García, A., Lopes, A. R., Keizer, J. J., & Vieira, D. C. S. (2022). Prediction, validation, and uncertainties of a nation-wide post-fire soil erosion risk assessment in Portugal. Scientific Reports, 12(1), 2945. https://www.nature.com/articles/s41598-022-07066-x

Peñuelas, J., & Sardans, J. (2021). Global change and forest disturbances in the Mediterranean basin: Breakthroughs, knowledge gaps, and recommendations. Forests, 12(5), 603. https://www.mdpi.com/1999-4907/12/5/603

Putrada, A. G., Alamsyah, N., & Fauzan, M. N. (2023, August). BERT for sentiment analysis on rotten tomatoes reviews. In 2023 International Conference on Data Science and Its Applications (ICoDSA) (pp. 111-116). IEEE. https://ieeexplore.ieee.org/abstract/document/10276800

Putrada, Aji Gautama, Nur Alamsyah, and Mohamad Nurkamal Fauzan. 2023b. “Wi-Fi Fingerprint for Indoor Keyless Entry Systems with Ensemble Learning Regression-Classification Model.” JOIV: International Journal on Informatics Visualization 7(4):2206–14. https://www.joiv.org/index.php/joiv/article/view/1498

Putrada, A. G., Alamsyah, N., Oktaviani, I. D., & Fauzan, M. N. (2023). A Hybrid Genetic Algorithm-Random Forest Regression Method for Optimum Driver Selection in Online Food Delivery. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 9(4), 1060-1079.. https://journal.uad.ac.id/index.php/JITEKI/article/view/27014

Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E., & Turetsky, M. (2020). Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environmental Research Letters, 15(3), 030201.. https://iopscience.iop.org/article/10.1088/1748-9326/ab6d3a/meta

Romano, N., & Ursino, N. (2020). Forest fire regime in a mediterranean ecosystem: Unraveling the mutual interrelations between rainfall seasonality, soil moisture, drought persistence, and biomass dynamics. Fire, 3(3), 49. https://www.mdpi.com/2571-6255/3/3/49

Zhao, A. P., Li, S., Cao, Z., Hu, P. J. H., Wang, J., Xiang, Y., ... & Lu, X. (2024). AI for science: predicting infectious diseases. Journal of Safety Science and Resilience.. https://www.sciencedirect.com/science/article/pii/S266644962400015X

Published
2024-09-10
How to Cite
Alamsyah, N., Budiman, B., Yoga, T., & Alamsyah, R. Y. (2024). COMPARISON LINEAR REGRESSION AND RANDOM FOREST MODELS FOR PREDICTION OF UNDERGROUND DROUGHT LEVELS IN FOREST FIRES. Jurnal Techno Nusa Mandiri, 21(2), 81 - 86. https://doi.org/10.33480/techno.v21i2.5237