FEATURE SELECTION COMPARATIVE PERFORMANCE FOR UNSUPERVISED LEARNING ON CATEGORICAL DATASET

Authors

  • Rachmad Fitriyanto STMIK PPKIA Tarakanita Rahmawati
  • Mohamad Ardi STMIK PPKIA Tarakanita Rahmawati

DOI:

https://doi.org/10.33480/techno.v22i1.6512

Keywords:

Chi-Square Test, Dynamic Dependency Threshold, Feature Selection, Mutual Information, Unsupervised Learning

Abstract

In the era of big data, Knowledge Discovery in Databases (KDD) is vital for extracting insights from extensive datasets. This study investigates feature selection for clustering categorical data in an unsupervised learning context. Given that an insufficient number of features can impede the extraction of meaningful patterns, we evaluate two techniques—Chi-Square and Mutual Information—to refine a dataset derived from questionnaires on college library visitor characteristics. The original dataset, containing 24 items, was preprocessed and partitioned into five subsets: one via Chi-Square and four via Mutual Information using different dependency thresholds (a low-mid-high scheme and dynamic quartile thresholds: Q1toMax, Q2toMax, and Q3toMax). K-Means clustering was applied across nine variations of K (ranging from 2 to 10), with clustering performance assessed using the silhouette score and Davies-Bouldin Index (DBI). Results reveal that while the Mutual Information approach with a Q3toMax threshold achieves an optimal silhouette score at K=7, it retains only 4 features—insufficient for comprehensive analysis based on domain requirements. Conversely, the Chi-Square method retains 18 features and yields the best DBI at K=9, better capturing the intrinsic characteristics of the data. These findings underscore the importance of aligning feature selection techniques with both clustering quality and domain knowledge, and highlight the need for further research on optimal dependency threshold determination in Mutual Information.

References

Bhadra, T., Mallik, S., Hasan, N., & Zhao, Z. (2022). Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer. BMC Bioinformatics, 23(S3), 153. https://doi.org/10.1186/s12859-022-04678-y

Büyükkeçeci̇, M., & Okur, M. C. (2023). A Comprehensive Review of Feature Selection and Feature Selection Stability in Machine Learning. Gazi University Journal of Science, 36(4), 1506–1520. https://doi.org/10.35378/gujs.993763

Covert, I., Qiu, W., Lu, M., Kim, N., White, N., & Lee, S.-I. (2023). Learning to Maximize Mutual Information for Dynamic Feature Selection (arXiv:2301.00557). arXiv. https://doi.org/10.48550/arXiv.2301.00557

Fitriyanto, R., & Syafiqoh, U. (2024). Multilevel Modal Value Analysis for Interpreting Categorical K-Medoids Clusters Data. Jurnal Techno Nusa Mandiri, 21(2), 134–143. https://doi.org/10.33480/techno.v21i2.5796

Hopf, K., & Reifenrath, S. (2021). Filter Methods for Feature Selection in Supervised Machine Learning Applications—Review and Benchmark (arXiv:2111.12140). arXiv. https://doi.org/10.48550/arXiv.2111.12140

Liu, S., & Motani, M. (2022). Improving Mutual Information based Feature Selection by Boosting Unique Relevance (arXiv:2212.06143). arXiv. https://doi.org/10.48550/arXiv.2212.06143

Párraga-Valle, J., García-Bermúdez, R., Rojas, F., Torres-Morán, C., & Simón-Cuevas, A. (2020). Evaluating Mutual Information and Chi-Square Metrics in Text Features Selection Process: A Study Case Applied to the Text Classification in PubMed. In I. Rojas, O. Valenzuela, F. Rojas, L. J. Herrera, & F. Ortuño (Eds.), Bioinformatics and Biomedical Engineering (Vol. 12108, pp. 636–646). Springer International Publishing. https://doi.org/10.1007/978-3-030-45385-5_57

Peng, D., Gui, Z., & Wu, H. (n.d.). Interpreting the Curse of Dimensionality from Distance Concentration and Manifold Effect.

Prasetiyowati, M. I., Maulidevi, N. U., & Surendro, K. (2021). Determining threshold value on information gain feature selection to increase speed and prediction accuracy of random forest. Journal of Big Data, 8(1), 84. https://doi.org/10.1186/s40537-021-00472-4

Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W., & O’Sullivan, J. M. (2022). A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. Frontiers in Bioinformatics, 2, 927312. https://doi.org/10.3389/fbinf.2022.927312

Rohadi, P. B. (2023). Optimasi Metode Naïve Bayes Menggunakan Seleksi Fitur Mutual Information Untuk Klasifikasi Teks Ujaran Kebencian. Universitas Pembangunan Nasional “Veteran.”

Sosa-Cabrera, G., Gómez-Guerrero, S., García-Torres, M., & Schaerer, C. E. (2024). Feature Selection: A perspective on inter-attribute cooperation. International Journal of Data Science and Analytics, 17(2), 139–151. https://doi.org/10.1007/s41060-023-00439-z

Tadesse, G. A., Ogallo, W., Cintas, C., & Speakman, S. (2022). Model-free feature selection to facilitate automatic discovery of divergent subgroups in tabular data (arXiv:2203.04386). arXiv. https://doi.org/10.48550/arXiv.2203.04386

Tang, C. (2024). Review on Application of Chi-square Statistic in Text Classification in Recent Five Years. Applied and Computational Engineering, 97(1), 115–118. https://doi.org/10.54254/2755-2721/97/20241397

Ting, K. M., Washio, T., Zhu, Y., & Xu, Y. (2021). Breaking the curse of dimensionality with Isolation Kernel (arXiv:2109.14198). arXiv. https://doi.org/10.48550/arXiv.2109.14198

Tsamardinos, I., Charonyktakis, P., Papoutsoglou, G., Borboudakis, G., Lakiotaki, K., Zenklusen, J. C., Juhl, H., Chatzaki, E., & Lagani, V. (2022). Just Add Data: Automated predictive modeling for knowledge discovery and feature selection. Npj Precision Oncology, 6(1), 38. https://doi.org/10.1038/s41698-022-00274-8

Yan, X., Sarkar, M., Gebru, B., Nazmi, S., & Homaifar, A. (2021). A Supervised Feature Selection Method For Mixed-Type Data using Density-based Feature Clustering (arXiv:2111.08169). arXiv. https://doi.org/10.48550/arXiv.2111.08169

Yang, Y., Wang, W., Fu, H., & Kuo, C.-C. J. (2022). On Supervised Feature Selection from High Dimensional Feature Spaces (arXiv:2203.11924). arXiv. https://doi.org/10.48550/arXiv.2203.11924

Downloads

Published

2025-03-17

How to Cite

Fitriyanto, R., & Mohamad Ardi. (2025). FEATURE SELECTION COMPARATIVE PERFORMANCE FOR UNSUPERVISED LEARNING ON CATEGORICAL DATASET. Jurnal Techno Nusa Mandiri, 22(1), 61–69. https://doi.org/10.33480/techno.v22i1.6512