OPTIMIZING PHARMACEUTICAL DISTRIBUTION IN PUBLIC HEALTH CENTERS USING FUZZY C-MEANS CLUSTERING

Authors

  • Syahfitri Nurahma Universitas Malikussaleh
  • Eva Darnila Universitas Malikussaleh
  • Fajriana Universitas Malikussaleh

DOI:

https://doi.org/10.33480/techno.v20i2.7336

Keywords:

clustering, drug distribution , fuzzy c-means , healthcare logistics , public health

Abstract

Efficient drug distribution is fundamental to ensuring the quality of public healthcare services. However, health departments often face challenges with imbalances between drug demand and available supply. This study addresses this issue by applying the Fuzzy C-Means (FCM) clustering algorithm to categorize drug demand levels across 16 public health centers (puskesmas) in Langkat Regency, Indonesia, from 2021 to 2023. Using historical data from 2,400 drug records, the analysis identified five distinct demand clusters: Very Low, Low, Medium, High, and Very High. The results revealed a significant disparity in drug needs, with the "Very High" demand cluster dominating (51.29% of data) in centers like Besitang and Tanjung Selamat, driven by high morbidity rates. In contrast, other clusters were less prevalent, such as the "Low" demand cluster, which was primarily concentrated in the Gebang health center. These findings, visualized using t-SNE plots, highlight significant regional variations in pharmaceutical needs. This data-driven clustering provides a robust framework for the Langkat District Health Office to develop more targeted, efficient, and equitable drug distribution strategies, ultimately improving healthcare service delivery.

References

Ahmad, S. S. S., Bakar, M. A. A., & Sani, N. F. M. (2021). A review on clustering algorithms for patient stratification. Journal of Biomedical Informatics, 119, 103824. https://doi.org/10.1016/j.jbi.2021.103824

Aria, T. A., Julkarnain, M., & Hamdani, F. (2023). Penerapan Algoritma K-Means Clustering Untuk Data Obat. KLIK: Kajian Ilmiah Informatika dan Komputer, 4(1), 649–657. https://doi.org/10.30865/klik.v4i1.1117

Cohen, M. A., Cachon, G. P., & Netessine, S. (2022). The Operations and Supply Chain Management Review. New York, NY, USA: Wiley.

Dinata, R. K., Bustami, Retno, S., & Daulay, A. P. B. (2022). Clustering the spread of ISPA disease using the fuzzy C-means algorithm in Aceh Utara. International Journal of Information System & Innovation Technology, 1(2), 21–30.

Ellis, C. A., Miller, R. L., & Calhoun, V. D. (2024). Explainable fuzzy clustering framework reveals divergent default mode network connectivity dynamics in schizophrenia. Frontiers in Psychiatry, 15, 1165424. https://doi.org/10.3389/fpsyt.2024.1165424

Huang, H., Wang, Y., Rudin, C., & Browne, E. P. (2022). Towards a comprehensive evaluation of dimension reduction methods for transcriptomic data visualization. Communications Biology, 5, 719. https://doi.org/10.1038/s42003-022-03628-x

Khamis, G. S. M., Alqahtani, N. S., Alanazi, S. M., Alruwaili, M. M., Alenazi, M. S., & Alrawaili, M. A. (2025). Using fuzzy C-means clustering and PCA in public health: A machine learning approach to combat CVD and obesity. Informatics in Medicine Unlocked, 57, 101666. https://doi.org/10.1016/j.imu.2025.101666

Long, P., Lu, L., Chen, Q., Chen, Y., Li, C., & Luo, X. (2023). Intelligent selection of healthcare supply chain mode – an applied research based on artificial intelligence. Frontiers in Public Health, 11, 1310016. https://doi.org/10.3389/fpubh.2023.1310016

Nurzida, A., Utami, I. T., & Rochayani, M. Y. (2024). Perbandingan Metode Fuzzy C-Means dan Gustafson-Kessel dalam Penentuan Cluster Tingkat Risiko Penularan Tuberculosis terhadap Penyakit di Jawa Timur. Jurnal Gaussian, 13(2),373–382. https://doi.org/10.14710/j.gauss.13.2.373-382

Ojiako, U. O., Chipulu, M., Omon, S. K., & Marshall, D. J. (2021). A review of the pharmaceutical supply chain in developing countries: A case of Nigeria. Journal of Operations and Supply Chain Management, 14(1), 1–17. https://doi.org/10.12660/joscmv14n1p1-17

Oriekhoe, O. I., Ashiwaju, B. I., Ihemereze, K. C., Ikwue, U., & Udeh, C. A. (2024). Review of Innovative Supply Chain Models in the U.S. Pharmaceutical Industry: Implications and Adaptability for African Healthcare Systems. International Medical Science Research Journal, 4(1), 1–18. https://doi.org/10.51594/imsrj.v4i1.696

Purba, I. M. D. A., & Isahak, A. F. (2021). Pharmaceutical logistics and supply chain issues in a developing country: A case of Indonesia. Journal of Pharmaceutical Policy and Practice, 14(1), 87. https://doi.org/10.1186/s40545-021-00369-z

Salsabila, C. S., Darnila, E., & Agusniar, C. (2024). Poverty level clustering in districts/cities using the K-Medoids method based on population data. The 2nd International Conference on Multidisciplinary Engineering, 2, 1–7. Universitas Malikussaleh. https://doi.org/10.29103/icomden.v2.xxxx

Setiawan, K. E., Kurniawan, A., Chowanda, A., & Suhartono, D. (2023). Clustering models for hospitals in Jakarta using fuzzy C-means and k-means. Procedia Computer Science, 216, 356–363. https://doi.org/10.1016/j.procs.2022.12.146

Syukron, H., Fayyad, M. F., Fauzan, F. J., Ikhsani, Y., & Gurning, U. R. (2022). Comparison K-Means K-Medoids and Fuzzy C-Means for Clustering Customer Data with LRFM Model. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 2(2), 76–83.

Turrahma, R. N., Putra, A. N. C., Alfajri, M. D., Gusmanto, R., & Oktoeberza, W. K. (2023). Implementasi Fuzzy C-Means untuk Clustering Data Harga Saham Harian pada PT. Astra International Tbk. Jurnal Rekursif, 11(1), 64–69.

Woodcock, G., Papazafeiropoulou, P. A., & An, C. J. (2021). Data-driven decision making in healthcare logistics: A systematic literature review. International Journal of Logistics Management, 32(3), 873–899. https://doi.org/10.1108/IJLM-05-2020-0203

Downloads

Published

2025-09-30

How to Cite

Nurahma, S., Darnila, E., & Fajriana. (2025). OPTIMIZING PHARMACEUTICAL DISTRIBUTION IN PUBLIC HEALTH CENTERS USING FUZZY C-MEANS CLUSTERING. Jurnal Techno Nusa Mandiri, 20(2), 179–188. https://doi.org/10.33480/techno.v20i2.7336